
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
AN ARCHITECTURE FOR THE SEMANTIC PROCESSING

OF NATURAL LANGUAGE INPUT TO A POLICY
WORKBENCH

by

E. John Custy

March 2003

 Thesis Advisor: J. Bret Michael
 Co-Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 2003
3. REPORT TYPE AND DATES COVERED

Master’s Thesis
4. TITLE AND SUBTITLE:

An Architecture for the Semantic Processing of Natural
Language Input to a Policy Workbench

6. AUTHOR(S) E. John Custy

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Formal methods hold significant potential for automating the development, refinement, and
implementation of policy. For this potential to be realized, however, improved techniques are
required for converting natural-language statements of policy into a computational form. In
this paper we present and analyze an architecture for carrying out this conversion. The
architecture employs semantic networks to represent both policy statements and objects in the
domain of those statements. We present a case study which illustrates how a system based on
this architecture could be developed. The case study consists of an analysis of natural language
policy statements taken from a policy document for web sites at a university, and is carried out
with support from a software tool we developed which converts text output from a natural
language parser into a graphical form.

15. NUMBER OF
PAGES 107

14. SUBJECT TERMS

Policy, Natural Language Processing, Semantic Networks, Policy
Workbench, Prolog

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for Public Release; distribution is unlimited

AN ARCHITECTURE FOR THE SEMANTIC PROCESSING OF NATURAL
LANGUAGE INPUT

TO A POLICY WORKBENCH

E. John Custy
B.S.E.E. New Jersey Institute of Technology, 1986

M.A. Cognitive and Neural Systems, Boston University, 1991
Master of Engineering, Engineering Science, The Pennsylvania State University, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author:
E. John Custy

Approved by:
James Bret Michael, Co-Advisor

Neil C. Rowe, Co-Advisor

Valdis Berzins, Chairman
Software Engineering Curriculum

Peter J. Denning, Chairman
Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Formal methods hold significant potential for automating the development,

refinement, and implementation of policy. For this potential to be realized, however,

improved techniques are required for converting natural-language statements of policy

into a computational form. In this paper we present and analyze an architecture for

carrying out this conversion. The architecture employs semantic networks to represent

both policy statements and objects in the domain of those statements. We present a case

study which illustrates how a system based on this architecture could be developed. The

case study consists of an analysis of natural language policy statements taken from a

policy document for web sites at a university, and is carried out with support from a

software tool we developed which converts text output from a natural language parser

into a graphical form.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION.................... ... 1

II. POLICY AND THE POLICY WORKBENCH.. 3
A. MOTIVATION: POLICY, COMPLEXITY, AND ABSTRACTIONS................. 3
B. POLICY-BASED NETWORK-MANAGEMENT... 6
C. THE RATE AT WHICH POLICIES CHANGE... 8
D. THE POLICY WORKBENCH.. 9
E. THE HUMAN-MACHINE INTERFACE FOR

A POLICY WORKBENCH... 11

III. THE POLICY WORKBENCH AND NATURAL LANGUAGE
 SUPPORT FOR POLICY: PREVIOUS WORK... 13
A. USE OF AN EXPERIMENTAL POLICY WORKBENCH:

 DESCRIPTION AND PRELIMINARY RESULTS... 13
B. NATURAL LANGUAGE PROCESSING SUPPORT FOR

DEVELOPING POLICY-GOVERNED SOFTWARE SYSTEMS..................... 16
C. SPECIFYING A SECURITY POLICY: A CASE STUDY................................. 18
D. THE BRITISH NATIONALITY ACT AS A LOGIC PROGRAM..................... 20
E. PONDER: A LANGUAGE FOR POLICY SPECIFICATION........................... 21
F. THE USE OF ARTIFICIAL INTELLIGENCE BY

THE UNITED STATES NAVY.. 22
G. NOTES ON NATURAL LANGUAGE

 PROCESSING TECHNOLOGY... 24
1. Modal Auxiliaries and Quantifiers .. 24
2. Fuzzy Descriptors and Their Modeling.. 24
3. Speech Act Theory.. 26
4. Anaphoric References... 27

IV. NATURAL LANGUAGE SUPPORT FOR POLICY: ARCHITECTURE
AND CASE STUDY... 29
A. REQUIREMENTS: THE ARCHITECTURE AND ITS

OPERATION... 29
B. PRELIMINARY WORK: ERROR TYPES AND CAUSES............................... 37
C. PRELIMINARY WORK: A TAXONOMY

FOR NATURAL LANGUAGE POLICY STATEMENTS................................. 40
D. CASE STUDY: ANALYSIS OF NATURAL LANGUAGE

POLICY STATEMENTS... 45
1. POLICY STATEMENT 1... 48
2. POLICY STATEMENT 2... 53
3. POLICY STATEMENT 3... 55
4. POLICY STATEMENT 4... 58
5. POLICY STATEMENT 5... 60
6. POLICY STATEMENT 6 .. 66

viii

7. POLICY STATEMENT 7... 68
8. POLICY STATEMENT 8... 71
9. POLICY STATEMENT 9... 73
10. POLICY STATEMENT 10... 77

V. DISCUSSION OF RESULTS.. 83

VI. CONCLUSIONS .. 85

APPENDIX A: SOFTWARE FOR REPRESENTING
MEANING LISTS IN GRAPHICAL FORMAT ... 87

LIST OF REFERENCES.. 91

INITIAL DISTRIBUTION LIST .. 93

ix

LIST OF FIGURES

Figure 1... 7
Figure 2... 8
Figure 3... 12
Figure 4... 15
Figure 5... 17
Figure 6... 17
Figure 7... 32
Figure 8... 34
Figure 9... 35
Figure 10... 52
Figure 11... 53
Figure 12... 60
Figure 13... 65
Figure 14... 66
Figure 15... 76
Figure 16... 80
Figure 17... 81
Figure 18... 88

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1.. 41
Table 2.. 42
Table 3.. 44
Table 4.. 48
Table 5.. 49
Table 6.. 54
Table 7.. 56
Table 8.. 58
Table 9.. 58
Table 10.. 61
Table 11.. 61
Table 12.. 62
Table 13.. 67
Table 14.. 69
Table 15.. 69
Table 16.. 71
Table 17.. 72
Table 18.. 74
Table 19.. 74
Table 20.. 77
Table 21.. 77

xii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Policy plays an important role in determining the success of business,

professional, political and social organizations. During normal day-to-day operations, the

behavior of any organization of nontrivial size reflects the decisions and actions

performed under various circumstances by the individuals within that organization, and

these decisions and actions are often influenced or even dictated by the organizations

policy. Whether an implicit part of the work culture, or explicitly developed,

communicated and enforced by management, policy plays an important part in

determining the behavior, and thus ultimately the success, of the organization.

A given set of policy statements should imply logical consequences that, under

ideal circumstances, would be easy to determine. Conceptually, it should be possible to

determine whether a particular action under a particular circumstance conforms to or

violates policy by simple examination of the policy statements themselves [Sibley,

Michael, Wexelblat, 1991]. In practice, however, the full consequences of a policy set

may be unclear because of large numbers of policy statements, the complexity that arises

when those statements interact with each other, and the presence of implicit policy

statements. Furthermore, it is not uncommon for policy sets to be internally inconsistent,

to have “gaps” (that is, to leave important real-world circumstances unaccounted for), or

to simply be unwieldy to communicate or work with ([Michael, Ong, Rowe, p. 1], [Stone

et. al., p. 10]). The use of policy to manage networks and other complex distributed

systems [Damianou, 2002] is of growing importance, and as these techniques mature we

can expect that creating, refining, and communicating policy for them will become ever

more challenging.

To deal with these problems, the concept of a policy workbench has been

proposed [Sibley, Michael, Wexelblat, 1991]. As a collection of tools for supporting the

development, refinement, communication and enforcement of policy, a policy workbench

exploits the formal logical structure implicit in any collection of policies. Though the

policy workbench concept has significant potential, this potential is not being realized, in

part because of human-machine interface issues. In particular, the transformation of

2

policy statements from natural language into an equivalent representation appropriate for

formal analysis is a labor-intensive and error-prone task requiring skills in both formal

methods and the application area within which the policy statements apply. This

difficulty is exacerbated by the fact that policies are constantly evolving, so that a policy

database must be updated on a regular basis.

This paper investigates the use of natural language processing (NLP) techniques

for converting general statements of policy from a plain-text natural-language form into

an equivalent computational form that can be processed using formal methods. Building

upon the work of previous researchers, we propose an architecture for representing and

processing the semantic content of policies. The architecture is distinguished by the use

of semantic networks as a representation language for both statements of policy and

objects within the domain of policy. Conformance to, or violation of, the policy set is

established by determining whether a semantic network representation of a policy

statement is a sub-semantic network of the semantic network representing a given domain

object. We present a case study in which statements of policy taken from a web-site

policy database are mapped to a graphical form, and these representations are studied to

identify potential problems and opportunities associated with the conversion of policy

statements and domain objects into semantic networks.

The remainder of this paper is structured as follows. Section 2 introduces the

topics of computer support for policy, the policy workbench, and natural-language

processing. Section 3 describes related work carried out by other researchers and

presents background information on natural-language processing. Section 4 presents our

architecture and investigates design issues through a case study. Section 5 discusses the

results of the case study, and Section 6 presents conclusions. Appendix A documents our

Mathematica code, which generates graphical representations of meaning lists.

3

II. POLICY AND THE POLICY WORKBENCH

The term policy is being used in this paper in the same way that an ordinary

person would use it in normal conversation: as set of rules that may, under extreme

circumstances, be violated, but which otherwise constrain or delineate the behavior of the

different actors within a group or organization. Even so, when used within a software

engineering context, the term policy is an ephemeral one [Sibley, Michael, Wexelblat,

1992], perhaps because the relationships between policy and formal systems can be

somewhat abstract, or perhaps because practical applications in areas such as networking

are not always transparent.

In this section, we discuss policy as a way of organizing the behavior of groups of

people, and also as a way of controlling the behavior of distributed hardware systems.

Two key points are emphasized. First, policy sets contain logical structure that can be

analyzed and refined through formal methods akin to those used in software

development. Second, policy supports certain abstractions that can significantly simplify

the tasks of all policy stakeholders.

A. MOTIVATION: POLICY, COMPLEXITY, AND ABSTRACTIONS

A passenger suffers a heart attack onboard a rush-hour commuter train. The

conductor does not stop for medical aid, but instead continues on route, picking up

passengers along the way. The unfortunate heart attack victim dies within an hour.

During the subsequent inquiry, a general manager for the transit authority stated

that there is a clear policy for medical emergencies onboard a train: stop at the next

station and wait for an ambulance. However, an assistant conductor who was at the scene

pointed out that the train operates on CSX owned tracks, and that CSX rules forbid trains

to make unauthorized stops or to ride through a station without stopping. It was also

pointed out that during a previous medical emergency a train stopped at a local station

and had to wait 25 minutes for an ambulance; continuing on into the city might have

actually reduced the wait for professional medical assistance. A spokesperson for

Amtrak said that Amtrak was “very interested” in determining exactly who had

jurisdiction over the train and the tracks [The New York Times, 1 August 2002].

4

As this story illustrates, policy plays a critically important role in shaping the

behavior expressed by the individuals within an organization. Policies are pervasive in

the civilized world, and whether assuming the role of taxpayer, motorist, or competitor in

an economy, we often follow policies without even thinking. It is easy to overlook that

policies are usually intended to provide benefits to the group as a whole at the expense of

some cost, constraint, or increased effort to each individual.

Yet as the story also illustrates, policy can be poorly designed and justified,

difficult to communicate, and even internally inconsistent, and can thus lead to results

that benefit no one. These characteristics are symptoms of a more fundamental problem:

complexity. To a person required to conform to a policy set, complexity can arise due to

coupling between policy statements, conflicts (real and/or apparent) between policy

statements, or simply because of large numbers of policy statements. Complexity can

also impact other policy stakeholders; for example, it may not be clear to a policymaker

how to construct a policy set to achieve a given set of organizational goals. Implicit,

unwritten policies compound this complexity, as does the common assumption that

exceptions to policy can be made under extreme circumstances. Complexity can thus

confound the efforts of all policy stakeholders: policy developers, policy maintainers,

policy enforcers, and those who must conform to policy.

Policy is not the only discipline that faces significant boundaries imposed by

complexity. It has been known for many years [Brooks, 1995] that complexity limits the

scope and sophistication of practical software systems. One of the most important

mechanisms used by software engineers to deal with complexity is abstraction. As

defined in [Berzins and Luqi, 1990, p. 2], an abstraction is a simplified view of a system

which contains only the details significant for a particular purpose. Abstractions are

essential for the development and maintenance of large-scale, complex systems, because

only through abstractions can such systems be analyzed and synthesized by individual

persons.

Abstractions play a similar role with policies. It is generally accepted [Michael,

Ong, Rowe, 2002] that policies can be broadly classified as meta-policy, goal-oriented

policy, and operational policy, and a look at each of these policy types indicates the sort

5

of support they can provide for abstractions. (The definitions and examples that follow

are from [Michael, Ong, Rowe, 2002].) A meta-policy is a statement of policy about

policy. Examples of meta-policy include “All passwords must comply with Security

Statement XYZ,” and “All policies regarding the removal of equipment from a building

are security policies.” Statements of meta-policy provide simplifying abstractions

because they allow policy to be grouped and reused.

A statement of goal-oriented policy specifies only the required final

circumstances that the domain object must meet. (A domain object is a person or thing

that must obey a given policy statement.) As an example, the policy statement

“Passwords must be hard to guess” requires domain objects to devise passwords that

satisfy this goal; the exact mechanism they use is of no concern. Goal-oriented policies

allow (and in fact, require) domain objects to determine for themselves the mechanics of

achieving the required goal. Policies of this type free the policymaker to think more

abstractly, because the policymaker is not required to explicitly specify how the desired

circumstances are to be achieved.

Goal-oriented policies allow the high-level goals of an organization to be

decomposed into a hierarchical collection of “miniature” goals. This hierarchy of goals is

also a hierarchy of abstractions: the high-level goals are the most abstract, and the lower-

level goals are necessarily much less abstract, in the sense that achieving the lower-level

goals is normally expected to require less thought or “creativity” on the part of the

domain objects at that level.

In contrast, a statement of operational policy is one that specifies explicitly a

procedure that must be carried out, or a low-level requirement that must be satisfied.

Examples of operational policy statements include “Passwords must be changed every

three months,” and “Passwords must contain at least one special character.” Statements

of operational policy certainly incorporate abstractions; in fact, general statements in any

natural language express a wealth of information that is not detailed explicitly. However,

it could be argued that operational policy is distinguished because, to some extent, it

provides domain objects with the exact opposite of an abstraction: operational policies

are explicit instructions or tasks that can be carried out in a mechanical way, and the

6

domain objects are relieved of even minimal judgment, creativity, and responsibility.

Operational policies allow a policymaker to use abstractions in an arbitrary way as the

goals and high-level policies of an organization are being developed, but to insulate

domain objects from those abstractions. This insulation may be of value when the high-

level goals of an organization are complex, confidential, or simply of no significance to

the domain objects.

B. POLICY-BASED NETWORK-MANAGEMENT

For many of the same reasons that policy is used to manage the behavior of

organizations of people, policy is of late emerging as the preferred way of managing

distributed computing systems and networks [Sloman, Lobo, Lupu, 2001]. Managing a

network of heterogeneous servers, routers, and other components is a difficult task

because even a moderately sized network may be impractical to configure manually

[Damianou 2001, p. 14]. As clients using a network request, and become willing to pay

for, various levels and combinations of security, priority, and performance (that is,

various levels of Quality of Service (QoS), in terms of packet loss, delay, jitter, etc.), the

complexities associated with network management will increase correspondingly.

Hardware and software that allows network managers to specify network behavior in

terms of policy is simplifying network control, in large part by abstracting away from the

network administrator many of the inconsequential details of network configuration.

One way of configuring a policy-based network-management scheme is shown in

Figure 1 [Joyce and Walker, 1999]. A policy server contains a policy repository, which

holds a complete database of all policy statements. Network conditions are monitored by

the policy server (or more generally, at a Policy Decision Point (PDP)), and when

conditions warrant, a command to change configuration is sent to the appropriate

elements in the network, such as switches, routers, and firewalls, which are also known as

Policy Enforcement Points (PEPs). This command may be sent directly to the network

element if the element contains a policy agent to interpret the command. If the network

element is not capable of interpreting the command, a stand-alone configuration proxy

issues the device specific configuration commands.

7

The arrows shown in Figure 1 indicate information flows between the policy

server and the various policy support and network elements. It is important to note that

the flow of information is not one-way; the Policy Server may need to configure the

network based on information that is not available at the appropriate network elements.

For example, a policy could potentially specify that when traffic becomes heavy at one

point in a network, certain actions be taken at another, far-away point in the network.

Thus, by sampling the network at a rate somewhat faster than the maximum rate at which

its characteristics might change, the policy server can exercise a form of “global” control

over the network. This type of control could not be carried out by any individual network

element with its locally available information.

Policy Server
(a.k.a. Policy Decision

Point)

Policy
Repository

Policy
ConsoleNetwork

Administrator

Configuration
Proxy

Network Elements such as Switches,
Routers, and Firewalls.

(These items a.k.a. Policy
Enforcement Points.)

Policy
Agent

Policy
Agent

Network
Element

Network
Element

Network
Element

Network
Element

Figure 1. Hardware relationships in a policy-based network-management scheme [Joyce
and Walker, 1999]. Arrows indicate communication flows. A Configuration Proxy
allows policy-based network-management to be used even with legacy hardware that
does not contain a Policy Agent.

8

Program in a High-Level
Programming Language

Instructions for
Microprocessor

Compiler

Statements of Policy Configuration Instructions
for Network Elements

Policy Decision Points,
Policy Enforcement Points

High-levels of Abstraction Low-levels of Abstraction

Figure 2. Statements of policy, like programs in a high-level programming language, are
representations at a high-level of abstraction. Policy statements apply to distributed
systems; that is, to systems composed of large numbers of processing elements.
Conventional computer programs are executed on a single processor.

It is important to note that although the use of policy for network configuration

provides significant power and flexibility to a network administrator, this power and

flexibility can potentially incur a significant cost if complexity is not managed. It is well

known that even the most thorough testing of an ordinary desktop application will

exercise only a small number of the possible paths through the code, and only a small

fraction of the values that the variables can simultaneously take; challenges at least as

significant can be expected to hold for policy sets controlling a network. Novel failure

modes, such as instabilities in a computer communication network can also arise if policy

is not chosen carefully. That is, because a policy server makes policy-related decisions

based on the conditions it senses on the network, the behaviors of network elements

could potentially switch back and forth between two or more unstable states. Careful

analysis of policy sets before deployment on a network could play an important part in

avoiding this and other problems.

C. THE RATE AT WHICH POLICIES CHANGE

To avoid confusion when reading the literature, is important to keep in mind that

when considering the rate at which policies change, two different time scales must often

be considered. A natural time scale to use when considering the action of any policy is

that over which the policy applies in a single case of application. For example, a natural

time scale for considering traffic laws would be on the order of minutes or hours, which

9

is the time for a typical automobile trip to which those policies would apply. Similarly, a

natural time scale for considering tax laws in the United States would be a year, because

tax laws typically apply over that span of time.

For the most part, policies do not change quickly when measured in their

“natural” time scale: traffic laws usually change slowly with respect to the pace of traffic,

and though each year sees a great number of changes to tax laws, those changes typically

represent only a small fraction of the total set of tax laws. In this sense, it is appropriate

to say that “...policies are relatively static compared to the state of the managed system”

[Damianou 2002, p. 17].

However, even if policies change slowly with respect to the state of the managed

system, that change may be very quick in a real-time sense. Furthermore, policies that

change slowly with respect to the state of the managed system still require careful

consideration by all stakeholders, because any change, even when apparently small with

respect to the entire policy set, can potentially influence any other policy. Thus, even

when policies are relatively static with respect to the state of the managed system,

computer support for policy management can be extremely valuable.

D. THE POLICY WORKBENCH

In addition to supporting abstractions that simplify conceptual and practical work,

policy within an organization can be changed or refined relatively quickly to address, for

example, a non-stationary environment or to support evolving organizational goals. The

important role that policy plays in determining the behavior of an organization, combined

with the fact that policy can be changed quickly and cheaply, suggests the following

analogy: In a broad sense, an organization behaves under the control of a particular

policy set in much the same way that a hardware microprocessor behaves under the

control of a particular software program. That is, though a policy set does not

comprehensively specify every detail of a human agents behavior (such as how to answer

a phone), it does specify an agents behavior in enough detail that successful policies can

be distinguished from unsuccessful policies. Furthermore, policy sets typically contain a

10

large number of policies, these policies are typically interrelated, and policies specify

behaviors to a non-trivial amount of detail. These considerations taken together suggest

that tools like those used in software development [Berzins and Luqi, 1990] may provide

valuable support to various policy stakeholders.

The policy workbench, proposed in [Sibley, Michael, Wexelblat, 1992], is an

integrated collection of software tools for aiding in the formal analysis of policy. Among

the tasks that the policy workbench is envisioned to perform are the following.

ß A policy workbench can check that a set of policy statements are consistent: That

is, that no statement conflicts with any other statement, either directly or

indirectly. Two types of consistency checks can potentially be carried out: a

collection of policy statements can be checked simultaneously (“batch” testing),

or a new policy statement can be checked against a set known to be consistent

(regression testing).

ß Given a real or hypothetical scenario, the policy workbench can retrieve

applicable policy statements.

ß Alternately, the policy workbench can analyze a given scenario and determine

whether policy is being conformed to or violated. This functionality of the policy

workbench addresses the problem of communicating policy, and supports both

those who must enforce policy as well as those who must conform to it.

ß A policy workbench can evaluate requests for exceptions, providing information

about an exceptions implications.

ß Finally, a policy workbench can maintain version control over policy, so that all

stakeholders can be assured of having access to the latest version of policy, and

that policy that was in effect at some particular time in the past can be retrieved.

Policies are statements about the allowable behaviors of an organization;

however, policies are generally developed to promote the high-level goals of an

organization. Because it is often unclear how best to shape the behaviors of individuals

11

to move towards a set of high-level goals, it makes sense to analyze and refine policy

statements with a tool like the policy workbench before imposing them.

E. THE HUMAN-MACHINE INTERFACE FOR A POLICY WORKBENCH

The policy workbench was conceived as a tool for lawmakers and enforcers,

business managers, information security personnel, and anyone else involved in the

creation, enforcement, and conformance to policy. It was recognized during early work

[Sibley, Michael, Wexelblat, 1992] that it would be an unacceptable distraction for most

policy stakeholders to learn an artificial language, even one that was somewhat “natural,”

to interact with a policy workbench.

This provides the motivation for a natural-language input system for a policy

workbench, but we see a natural-language input system as only one part of a

comprehensive human-machine interface for a policy workbench. For the natural-

language input system to be of maximum effectiveness and efficiency, we envision the

human-machine interface for a policy workbench as including an output system that

provides the user with direct and immediate feedback on how the workbench is

interpreting the input. That is, after providing a natural language statement of any sort to

the policy workbench, and before the next natural language statement is submitted, the

workbench should respond with an expression stating its interpretation of the human

input. Ideally, this expression would be in natural language text. However, even

feedback consisting of the workbenches interpretation in a computational format would

be valuable; this is because the human operator would only need to understand the

language, and would not have to generate statements in this language. The purpose of this

feedback would be to give the human operator the opportunity to catch mistaken

interpretations as soon as possible, and to provide corrections while the intent of the

policy was still in mind.

12

Human Operator Policy Workbench

Natural Language Policy and
Control Statements

Statements as Interpreted by the
Policy Workbench

Figure 3. The human operator of a policy workbench provides policy and control
statements in a natural-language format, and receives immediate feedback about how the
natural-language statements have been interpreted. Though feedback in a graphical or
natural-language format would be optimal, such formats are not absolutely necessary.

Direct and immediate feedback to a user, as indicated in Figure 3, will compound

the benefits of a natural-language input system. The most important benefit of such

feedback is that it would help to maintain the integrity of the policy database: it allows

the user to take corrective action as soon as a misinterpretation on the part of the

workbench occurs. Without this feedback, inputs that are misstated by the user, or

equivalently misinterpreted by the policy workbench, will become integrated within the

policy database. The case of the human-machine interface without feedback is similar to

that of an open-loop control system, while the case with feedback is analogous to that of

a closed-loop control system.

Other benefits can be identified. Information about how an input is being

interpreted could allow the user to provide corrective feedback to natural-language

processing systems that adaptively learn from their mistakes. Conversely, a policy

workbench with a mature and stable natural-language processing system could return

information to a user to help them learn about the capabilities of the policy workbench, or

even to help them learn certain specifics of a particular application domain.

13

III. THE POLICY WORKBENCH AND NATURAL-LANGUAGE SUPPORT
FOR POLICY: PREVIOUS WORK

In this section, we discuss six papers that present ideas relevant to our later

discussions. The paper by [Sibley, Michael, and Wexelblat, 1992] introduces the concept

of the policy workbench and explores issues associated with its development and use.

The second paper, [Michael, Ong, and Rowe, 2002], describes the development of a

prototype natural-language input system for a policy workbench. Our work in Section IV

of this paper uses [Michael, Ong, and Rowe, 2002] as a baseline for comparison.

[Cuppens and Saurel, 1996] and [Sergot et. al., 1986] both present studies

involving the manual translation of natural language policy specifications into a

computational form appropriate for computer-aided analysis; these works are of interest

here because we are developing a system to carry out automatically what they have

successfully done through manual labor. [Damianou et. al., 2001] describe the policy

specification language Ponder, which provides a common language for specifying access

and control implementation mechanisms for distributed object systems. [Sloane, 1991]

describes the deployment of a system that is in some ways similar to a policy workbench

onboard a United States Navy ship.

Finally in this section we discuss some basic concepts associated with natural

language processing that will provide support for our later work. We present brief

summaries of modal auxiliaries and quantifiers, fuzzy descriptors, speech act theory, and

anaphoric references.

A. USE OF AN EXPERIMENTAL POLICY WORKBENCH: DESCRIPTION
 AND PRELIMINARY RESULTS

The first part of [Sibley, Michael, and Wexelblat, 1992] presents a requirements

analysis, a preliminary design, and a prototype implementation for an integrated

collection of tools to support the formulation, analysis, and implementation of policy.

The set of tools, referred to as a policy workbench, is envisioned to be a general purpose

system applicable to any policy domain, and requires only that the user have appropriate

domain knowledge, with no specialized knowledge in formal systems necessary. The

14

second part of the paper presents two case studies that illustrate the potential use of a

policy workbench.

The paper begins with a requirements analysis for the policy workbench. Several

observations, summarized below, are established that are important for any work with

policy.

ß Policies are written in natural-language, and thus tend to be imprecise.

ß Policies are often incomplete or inconsistent.

ß Policies are often coupled together; that is, they are interdependent.

ß In real-world applications, a policy set can be very large.

ß There is often a need to represent time in relatively sophisticated ways. They

point out that it may be necessary to represent time in absolute terms, such as

“...the fiscal year starts at midnight on Sept. 30...”, as opposed to just the ordering

of events.

ß In some cases it may be necessary to represent intent of an actor.

ß Policies fall along a wide scope of comprehensiveness, from very general to very

specific.

The policy workbench itself, shown below in Figure 4, consists primarily of the

following three components.

ß Theorem and Assertion Analyzer This component of the policy workbench

verifies that inputs are syntactically correct, and that certain semantic conditions

are satisfied, such as consistency with existing policy. If an input is found to be

syntactically correct and consistent with existing policy statements, the policy

database is updated. This component is also responsible for configuration

management of the policy database.

ß Compiler-Generator-Interpreter This component is used to determine the

consistency of procedures and scenarios with the statements in the policy

database. That is, it allows a user to ask “what if?” type questions of the policy

15

set. The user generates code representing a procedure or scenario using a

computer-aided software engineering (CASE) tool. This code is merged with pre-

and post-conditions which represent the structure of the policy statements. The

resulting software can be analyzed to determine whether any solutions exist, or

whether inconsistencies have occurred.

ß Policy Selector The purpose of this component is to extract subsets of policy

from the policy database for the user. Though work had just begun on this

component when [Sibley, Michael, and Wexelblat, 1992] was written, an analysis

of pre- and post-conditions associated with statements in the policy database was

envisioned to allow commonalities in policy statements to be determined.

Policy Workbench Backplane

Policy Input
System

Policy
Input
and
Requests

Policy
Database

Theorem and
Assertion
Analyzer

Policy
Structurer

and Selector

Rule
Compiler/
Generator/
Interpreter

Object Entity

Pre-Conditions

Procedures

Post-Conditions

Executable
System

Note
Changes

Request

Request

Actual Flow

Effective action controlled through the
workbench flow

Key

Figure 4. Relationships between policy workbench tools. Adapted from [Sibley,
Michael, Wexelblat, 1992, Fig. 1].

To illustrate the use of a policy workbench, a case study involving the analysis of

a set of security policies for a secure work area is presented. A set of 21 policy

16

statements, 11 real-world facts, and nine statements from a hypothetical “employee

manual” were analyzed, converted into a computational form, and processed with a

theorem prover. The preliminary policy analysis phase required very little computer

support, because it involved defining the problem and establishing the real-world facts

needed for subsequent analysis to be automated. However, checking for inconsistencies,

determining whether a policy set was minimal in a formal logic sense, and generating the

logical consequences of the policy database relied heavily on OTTER, a resolution-style

theorem prover program. The authors report that the time required for analysis by the

theorem prover was sometimes significant, and that techniques for reducing the size of

the search space were thus an important area for future research.

B. NATURAL-LANGUAGE PROCESSING SUPPORT FOR DEVELOPING
 POLICY-GOVERNED SOFTWARE SYSTEMS

[Michael, Ong, and Rowe, 2001] describe the architecture of a Natural-Language

Input Processing Tool (NLIPT), and report experiments that they performed with a

prototype of one component of it, the extractor. Their NLIPT, shown below in Figure 5,

is comprehensive in the sense that it processes all user input, including policy statements,

queries, and scenarios. The NLIPT operates by generating a meaning list representation

of the natural-language input, and then by generating a set of key index terms by

selecting and weighting terms from the meaning list. The key index terms are used to

retrieve one or more structural schema of applicable policy statements from the Policy

Element Identifier Tool of the policy workbench. The structural schema returned by the

policy element identifier tool contain implicit facts and hierarchical relationships that can

be exploited by the structural modeler to generate a conceptual schema from the meaning

list. The conceptual schema is then processed by the logic modeler, which infers such

things as quantifiers and their scope, to generate a first-order predicate logic

representation of the input.

17

Natural Language Input Processing Tool

Output to
Policy
Workbench
Tools

Extractor Structural
Modeler

Index-Term
Generator

Policy Element
Identifier Tool

Meaning
List

Conceptual
Schema

Natural
Language

Input

Key Index
Terms

Schema of
Applicable Elements

Data
Dictionary

Logic
Modeler

Figure 5. Architecture of the Natural-Language Input Processing Tool. Figure adapted
from [Michael, Ong, and Rowe, 2001, Figure 1].

The prototype extractor operates, as shown in Figure 6, by generating a part-of-

speech tag for each word in the natural-language input, and by grouping together, or

“chunking,” multiword syntactical units such as noun and verb phrases. This tagged and

chunked input is converted into a series of Prolog predicates by an intermediate processor

written in Java. A program written in Prolog then generates a meaning list for the input

using a finite state grammar that was tailored to capitalize on the structure expected to be

seen in typical policy statements.

POS Tagged & Syntactically
Grouped NL Policy Statements

Natural Language
Policy Statements

Meaning List

Prolog
Predicates

Part-of-Speech
Tagger and Chunker

Intermediate Processing:
Convert to Prolog Format

Meaning List
Generator

Figure 6. Data flow diagram for the Extractor. Adapted from [Ong, 2001, p. 41, Fig. 5].

18

The prototype extractor was tested by applying it to a collection of policy

statements for a university web site, and it was found that 96% of the meaning list terms

it generated were correct. Full sentences consisted, on the average, of eighteen meaning

list facts, so that the number of wrong meaning list facts was about (1-0.96)*18=0.72 per

sentence; in other words, there was more than one error per two sentences. The authors

point out that the use of a full context-free grammar in the meaning list generator would

likely improve performance, as would refinements to the part-of-speech tagger and

chunker.

C. SPECIFYING A SECURITY POLICY: A CASE STUDY

The work presented in [Cuppens and Saurel, 1996] provides significant insights

into the relationships between natural language statements of policy and equivalent

computational forms. The authors present a logic-based language for expressing

statements from a natural-language security policy, and they use a case study to both

motivate key components of the language and to illustrate how the language is applied.

A security document consisting of 60 pages of natural-language text was studied, and the

main logical concepts used within it were identified and then formalized in the

(unnamed) language. The authors state that the expressiveness of the security document

was rich, and it expressed concepts such as obligation, permission, prohibition,

responsibility, and delegation.

The language developed in [Cuppens and Saurel, 1996] is intended to allow

security administrators to specify, define and formalize security policies for a particular

high-security-risk environment. Though the case study presented in this paper focuses

only on the formalization of security policies, the language being developed is envisioned

to provide representations that will allow security administrators to carry out the

following tasks.

ß Query a given security policy;

ß Verify that properties such as consistency and completeness are enforced by a

given policy;

19

ß Verify that a given situation does not violate the security policy; and

ß Investigate interoperability problems between several security policies.

To represent policy statements like those found in the security document, the

authors incorporate into their language the fundamental constructs of objects, events,

actions, and agents. Additional concepts such as delegation, obligation, permission, and

prohibition were also included. Concepts such as obligation, permission, and prohibition

are characteristic of deontic logic, which is used to reason about ideal and actual

behaviors [Meyer et. al., 1996]. Deontic logic is an important component of the language

presented in this paper.

The language uses objects as a way of organizing data and associated operations,

and also to support inheritance so that different levels of abstraction can be represented in

a hierarchical way. Events are used to express ways in which the environment may

change. Actions are applied to objects that occur in a regulation, and are expressed as

methods of an object. Both events and actions have temporal constructs associated with

them: the Event class has the boolean attributes Before, During, and After, and actions

support the three corresponding binary predicates Before_Exec, During_Exec, and Exec

(which is an abbreviation for After_Exec).

The language also provides constructs for further deontic expressions such as

obligation, permission, prohibition, and for actions that are often implicit or indirect. For

example, a goal-oriented policy will only specify the results of an action without

specifying the actions themselves. Similarly, a policy statement may only specify the

person that is responsible for ensuring that an action is carried out; the agent who actually

performs the action is not named. To support implicit and indirect actions such as these,

the language provides the operator Do. Informally, if a is an agent, and p is a formula

that describes an expected effect of an action, the expression Do(a,p) specifies that a

brings it about, or sees to it, that p is the case.

The authors point out that many of the statements from the policy document can

be put in the form: if some condition is satisfied, then a particular agent is prohibited,

obligated, or permitted to do something. This point is supported by several examples

20

which show natural language statements taken from the policy document along with the

corresponding computational representation in their formal language. The following is

one of these examples [Cuppens and Saurel, 1996, p. 131].

During the time an agent is elaborating a document classified at the secret level,

he/she is obliged to work in a protected area.

 Agent(a)
Ÿ Classified_Document(d)
Ÿ Classification(d)=Secret
Ÿ During_Exec(a,Elaborated(d))
Æ O $ z, (Protected_Area(z)

Ÿ During_Exec(a, Work(z)))

This example illustrates the use of the deontic modality “O,” which specifies an

obligation. Except for a few policy statements with particularly complex structures, the

authors were successful in representing all statements from the policy document in their

formal language.

Of particular interest are the difficulties the authors encountered in interpreting

and translating the natural language statements from the security document. The authors

note that a significant number of these statements could only be interpreted as simple

observations of fact, or statements of advice; such statements were discarded. Another

difficulty was “... to identify which agents are concerned with each norm of the

instruction: this information was often left implicit in the regulation.” That is, the natural

language policy statements often left unspecified the particular domain objects that the

policy applied to. A further difficulty was the intentional ambiguity in the subject policy

document: “the lack of precision ... was deliberate in order to make the regulation

applicable by a large variety of organizations.”

D. THE BRITISH NATIONALITY ACT AS A LOGIC PROGRAM

As with [Cuppens and Saurel, 1996], our interest in [Sergot et. al., 1986] comes

about (in part) because they have done “by hand” what we hope to accomplish

automatically: they have successfully converted a piece of statutory law, the British

Nationality Act of 1981, into a logical representation appropriate for computer-aided

21

analysis. The work of [Sergot et. al., 1986] is also noteworthy for its observations on

logic programming (especially the formalization of negation), and applications of formal

representations.

[Sergot et. al., 1986] generate their representation of the British Nationality Act in

terms of Horn-clause logic, a segment of first-order logic which, though restricted in its

expressiveness, lends itself well to efficient theorem provers. Their formalization was

developed in a top-down way. That is, high-level concepts (for example, “place of

settlement”) were successively replaced with lower level concepts until reduced to

undefined, concrete concepts, which can in turn were established by reference to the

particular case under study, and through various other means.

Their development also occurred with a significant amount of trial and error:

logical representations for a particular clause would be generated, and then refined in

accord with observed shortcomings. According to standard programming practices, this

approach would be deemed bad practice; good methodology requires a correct and

complete program specification before coding begins. However, the authors point out

that the formalization of legislation and policy is much more like the development of a

formal specification for a piece of software, or like the development of axioms for an

axiomatic mathematical system, than it is to the development of a program. That is,

though their finished product has the outward appearance of a program, in substance it is

much more like a formal specification; they essentially converted an informal

specification into a formal specification.

E. PONDER: A LANGUAGE FOR POLICY SPECIFICATION

Though technologies like active networks, mobile agents, and management by

delegation are increasing the flexibility and functionality of network services, they are

also compounding the magnitude and complexity of tasks associated with maintaining a

network and ensuring the integrity of the information traversing it. Policy-based network

management is one approach being developed for dealing with these problems. Policy-

based network management is based on a strict separation of network implementation

from the policies used to manage it, so that the policy-based description of network

22

behavior can be changed without requiring changes to the underlying network. Ponder

[Damianou et. al., 2001] is a policy-specification language developed to support policy-

based management of the various entities that make up distributed-object systems.

The policy types that Ponder supports include access control policies, obligation

policies, and constraints. Access control policies deal with limiting the activities of

legitimate users (that is, users who have been successfully authenticated). Ponder

supports access control through positive and negative authorization policies, information

filtering policies, delegation policies, and refrain policies. Ponder also supports

obligation policies, which specify actions that must be performed by certain actors when

certain events occur.

A variety of techniques are available in Ponder for simplifying and organizing

policy. Constraints can be expressed in Ponder through a subset of the Object Constraint

Language, and policy can be specified in terms of roles and groups. Specifying policies

in terms of roles, instead of specific individuals permits personnel to be changed without

requiring that policy statements be changed, while groups allow policy sets to reflect

organizational structure, providing simplicity and opportunities for reuse.

A significant concept used with Ponder is that of domains. Domains are a means

of partitioning objects to which policies apply according to geographic boundaries, object

type, or other ways convenient for human managers. Domains are similar to directories,

and are implemented through the use of LDAP services.

F. THE USE OF ARTIFICIAL INTELLIGENCE BY THE UNITED STATES
 NAVY

[Sloane, 1991] describes how a sophisticated software system for knowledge

extraction, storage, and transfer was introduced on board a nuclear-powered aircraft

carrier. This software system, despite its potential, never “caught-on” with ship

personnel because it was perceived as not supporting users needs. The system eventually

died from neglect. A look at some of the reasons behind this failure illustrates how a

software tool for improving the performance of an organization can fail for a number of

reasons other than its technical quality. In particular, a tool for knowledge storage and

23

retrieval has to be positioned within an organization so that its capabilities are relevant

and useful to end users. Also, users must be provided with appropriate resources, such as

time and training, to successfully exploit the tool.

The deployed software system, called “ZOG,” was conceived to provide benefits

similar to those that would be provided by a simple policy workbench. Specifically, it

was to allow ship personnel to extract information about billets, individuals, and task

responsibilities as the need for such information arose during problem solving. A critical

aspect of ZOG was that the information within it was to come from the crew itself:

ZOG’s information databases were to be populated and constantly refined by the ships

officers and crew, so that knowledge gained through experience would be retained

despite personnel turnover. ZOG would thus become a hardcopy record of corporate

procedures, memory, and expertise.

For a number of reasons, however, ZOG was rarely consulted, and even less

frequently updated. In part this was because the ship was first and foremost required to

perform as an operational aircraft carrier: Operational readiness was of the utmost

concern for shipboard personnel, and as a research project with benefits that were not

immediately visible, consulting and maintaining ZOG became a low priority.

Of equal significance was the problem of responsibility assignment. A deployed

aircraft carrier is among the most hazardous work environment in the world, and as a

consequence the ships officers and crew bear a heavy responsibility for all decisions and

actions. This responsibility could not be assumed by a machine, and so ZOG’s output

was reduced in the eyes of users from credible guidance to mere suggestions requiring

evaluation by the user.

The pace of onboard decisions and actions also served to marginalize ZOG. In

many cases it was critical not just that the right decision be made, but also that the right

decision be made quickly. ZOG’s keyboard driven menu system and the uncertain

quality of its outputs made ZOG too inefficient for practical use.

24

G. NOTES ON NATURAL LANGUAGE PROCESSING TECHNOLOGY

1. Modal Auxiliaries and Quantifiers

Modal auxiliaries appear frequently in natural language statements of policy, and

they are important because they mark deontic logic constructs common in policy

statements. As explained in [Hodges and Whitten, 1982], an auxiliary verb is a verb used

with a main verb in a verb phrase; examples include be, have and do. An auxiliary

typically indicates tense, and may also indicate voice, mood, person, and/or number.

Modal auxiliaries are auxiliaries that do not take inflectional endings such as -s, -ing, or -

en. Examples of modal auxiliaries include will, would, shall, should, may, might, must,

can, and could.

It is interesting to note that “there is only partial agreement among linguists as to

which words are modal auxiliaries” [McCawley, 1998], though there are several

linguistic requirements that at least some linguists hold to be necessary for something to

be a modal. These requirements are for the most part quite technical, but one states that a

“modal” term is one that refers to “alternate possible worlds” by expressing a notion such

as possibility, necessity, or desirability.

As explained in [Jurafsky and Martin, 2000], a number of different kinds of word

classes can appear in a noun phrase between a determiner and the head noun; these

include cardinal numbers, ordinal numbers, and quantifiers. A quantifier specifies for

how much or for which part of a domain a propositional function is true. For example

[example from McCawley, 1998], in “Some politicians are honest,” the quantifier “some”

indicates that “x is honest” is true of some non-empty part of the domain defined by

“politician.” Stated in another way, all politicians are either honest or not honest, and

those that are honest make up some non-zero fraction of all politicians.

2. Fuzzy Descriptors and Their Modeling

In some cases an element of a domain may not make a proposition completely

true or completely false; sometimes an element of a domain makes a proposition true

only in some qualified sense. For example, when stating whether a particular individual

25

fits a descriptor such as “fat” or “jolly,” the answer in most cases is not a clear and simple

“yes” or “no,” but rather a more qualified phrase like “sort of.” [McCawley, 1993] In a

similar way, a natural language policy statement for a web site might refer to a “large

graphic,” or might require that a certain HTML construct “be used sparingly,” where

“large” and “sparingly” are not specified in detail. Using only our intuition, we may feel

that the degree to which a given graphic is large is “not really,” “sort of,” or “quite.”

One approach for dealing with these vague terms is through fuzzy logic. As a

generalization of normal two-valued logic, fuzzy logic allows predicates to take truth

values that fall within the interval [0,1]. For example, we may feel that a particular

individual is “jolly” to a degree of 0.7. Similarly, a graphic appearing on a web page may

fit the quantifier “large” to the extent 0.4. It is important to note that we are not saying

that “the graphic under consideration has a probability of 0.4 of being large.” Rather, we

are saying that it fits, or conforms to, the quantifier “large” to the degree 0.4. Something

that perfectly fit the term “large” in an unqualified way would be “large” to degree 1.0,

while something that absolutely did not fit would be “large” to degree 0.0. Fuzzy

descriptors are derived from the concepts of fuzzy logic, and provide a non-probabilistic

way to model vague quantities that appear in natural language text. Verbs, nouns,

adjectives, and grammatical quantifiers can be fuzzy in natural language text.

Multiple fuzzy terms that appear in a single sentence can be combined according

to the formulas (shown in prefix notation) below . These formulas are natural

generalizations of the rules for normal 0-1 logic [McCawley, 1993]. However, it is

important to note that these equations provide only upper bounds for the terms in

question, and these upper bounds can be far from the average case.

/~A/ = 1-/A/
/ŸAB/ = min(/A/, /B/)
/⁄AB/ = max(/A/, /B/)
/…AB/ = 1 if /A/£/B/

= /B/ if /A/ > /B/

To assign a fuzzy value to an expression, a number of different techniques can be

used. Taking as an example the case of determining whether a graphic is “large,” we

26

might proceed by finding the distribution of graphic sizes within one or more web sites,

and then assigning a given graphic a fuzzy value for “large” depending on where it falls

in the distribution. In other words, suppose we knew that 80% of the graphic images in

some comprehensive sample were smaller in size than the graphic in question. We would

assign that graphic a fuzzy value of 0.8 for the attribute “large.” We could conclude that

a policy statement “Large graphics are prohibited on pages that satisfy X” would be

violated to the degree 0.8 by the presence of this graphic on a page that satisfied the

criteria X.

3. Speech Act Theory

In the analysis of natural language text, and in the development of software for

processing such text, it is important to recognize that there is much more information

contained in a natural language expression than is apparent through purely logical means:

speech is a sophisticated form of human interaction, and social forces impose a number

of conventions and subtleties that must be recognized and understood before information

can be successfully extracted. Any speech statement is a social act, just like shaking

hands, and is full of subtle conventions that prevent meaning from being extracted

through purely logical analysis. Speech has to be interpreted as a social interaction in

order to be fully understood [McCawley, 1993]. This is especially important for natural-

language policy, where statements may be worded in polite ways that do not appear as

imperatives syntactically.

A simple example of a speech act is the question: “Could you close the door?”

Though a response of “Yes” would be a logically correct answer, such a response would

strike any fluent speaker of English as odd, because the question is in fact a polite request

that the door be closed. The speaker knows that the person to whom the question is

addressed is capable of closing the door, and is simply asking them to do so in a polite,

informal way.

As another example, the following hypothetical letter-of-recommendation

[Pinker, 1994] contains only the most positive expressions about the person being

27

recommended, yet it is unlikely that this letter will gain that person much credibility in

the eyes of the recipient. This simple example illustrates that speech acts can appear in

written just as well as spoken form.

Dear Professor Pinker,
I am very pleased to be able to recommend Irving Smith to you. Mr. Smith is a model student.

He dresses well and is extremely punctual. I have known Mr. Smith for three years now, and in every
way I have found him to be most cooperative. His wife is charming.

Sincerely,
Professor John Jones

In a literal sense this letter makes only the most positive statements about Mr.

Smith, yet at the same time it clearly conveys the message “Stay away from Smith: he’s

dumb as a tree” [Pinker, 1994]. This twofold meaning comes about because the positive

statements about Mr. Smith concern things that are entirely irrelevant in the academic

sphere. The author of the letter does not explicitly express his true feelings because an

explicit expression of these feelings would be distasteful to both the writer and the reader,

and furthermore the author probably wants to distance himself from anything that might

cause harm to someone with whom he has a relationship of trust.

Speech acts have no doubt evolved for a number of reasons: to provide an

“escape” that prevents people from being embarrassed (as in the example of the letter

above), to save effort on the part of both the speaker and listener, and in general to make

the communication process more effective and efficient. One consequence of speech

being effective and efficient is that “... listeners tacitly expect speakers to be informative,

truthful, relevant, clear, unambiguous, brief, and orderly” [Pinker, 1994]. These

expectations can provide important information for converting natural language text into

a computational form.

4. Anaphoric References

Another complication in interpreting natural language text comes about through

anaphoric references. A reference to something (i.e., to a person, place, or thing) that has

been previously introduced into the discourse is called anaphora, and the referring

expression used is said to be anaphoric [Jurafsky and Martin, 2000]. In many cases

28

pronouns such as he and it are anaphoric references: if someone says, for example, Ask

that policeman, and he will tell you, the pronoun he is a substitute referring to the

recently mentioned policeman [Bloomfield, 1984]. However, anaphora can occur

through a number of other syntactic structures, including both definite and indefinite

noun phrases, demonstratives, and a structure referred to as one-anaphora [Jurafsky and

Martin, 2000].

The problem of resolving anaphoric references is significant for processing

natural-language policy statements, because often many separate but interrelated

statements have to be coordinated into a conceptually unified whole. Fortunately, several

algorithms exist for identifying the referents of anaphoric expressions [Jurafsky and

Martin, 2000]. One algorithm, due to [Lappin and Leass, 1994], uses weighting factors

assigned to seven salience factors to determine the referent for anaphoric references. It

consists of five relatively simple steps, and takes into account potential referents that

occur up to four sentences back.

A tree-search algorithm [Hobbs, 1978] takes the syntactic representations of

previous sentences, and searches for the antecedent noun phrase among these syntax

trees. For correct operation, this algorithm depends on having correct and complete

syntax trees for previous sentences. An algorithm by [Brennan et. al., 1987] is based on

the idea that at any point in a normal dialog, there is a single entity being “centered” on,

or in other words that the dialog is focusing on some particular noun phrase. This

algorithm attempts to track the entity being centered on.

29

IV. NATURAL-LANGUAGE SUPPORT FOR POLICY: ARCHITECTURE AND
CASE STUDY

The current state-of-the-art in natural-language processing (i.e., [Allen, 1995],

[Guglielmo and Rowe, 1992]), along with previous work towards the development of

natural-language input systems for a policy workbench ([Michael, Ong, Rowe, 2002],

[Ong, 2001]) together support the hypothesis that a robust natural-language input

interface for a policy workbench is technically feasible. However, despite the many

applications that would benefit from a complete and robust policy workbench with a

friendly, easy to use interface, progress towards this goal has been slow. It appears that

complexity in components such as the index term generator, the policy element identifier

tool, and the structural modeler has played at least some part in slowing this progress. It

is well known that complexity is one of the most significant obstacles in the development

of sophisticated software systems ([Berzins and Luqi, 1991], [Brooks, 1995]), and that

the appropriate use of abstractions, and the appropriate use of geometric or graphical

techniques for visualizing data and algorithms can have far reaching benefits. This is

especially true in the development of prototype systems.

In this section we argue that the development of a natural-language input

processor for a policy workbench can be simplified by representing policies and domain

objects as semantic networks, and by exploiting graphical representations of the

associated data and algorithms. We begin by reviewing key requirements for a policy

workbench, and we then present an architecture based on the use of semantic networks

that we anticipate can meet those requirements. We discuss the types of errors that our

architecture may commit, and a taxonomy for policy statements. We then present a case

study in which ambiguities are identified in a collection of “real-world” policy

statements, and transformation rules are proposed for eliminating these ambiguities.]

A. REQUIREMENTS: THE ARCHITECTURE AND ITS OPERATION

In this and the following subsections, we develop, analyze, and refine an

architecture to support natural-language input to a policy workbench. Throughout this

30

process, requirements for our natural-language input processing tool (NLIPT) will

include the following.

Our primary design consideration is to reduce the complexity of the natural-

language input system, while not reducing the functionality of the workbench itself.

Complexity, of course, is a subjective term; our more specific goal is to use semantic

networks as a vehicle for introducing geometric structures for the representation of data

and for the interpretation of operations carried out on that data. This requirement is

motivated by our desire to have in hand a system that can be easily refined, and which

has at least sub-components that can be analyzed to some extent.

Ideally, our NLIPT will be able to accept arbitrary statements of natural-language

policy and represent them correctly in a computational form. However, it is unlikely that

we will be able to develop an ideal system, considering that even humans are well

capable of misinterpreting each other. We set for ourselves the “straw-man” requirement

that our NLIPT accept arbitrary natural-language input, but falling short of that goal, we

prefer a system that accepts natural-language statements that are somehow restricted in

scope or structure, rather than a system that requires input based on a formal syntax, even

if that syntax is “simple” or “natural” in some sense.

It is to be expected that the NLIPT for a policy workbench will be domain

dependent to some extent. The primary reason for this is efficiency: within a particular

domain, there are fewer potential meanings associated with a given word in an input

statement. Also, probabilities associated with a restricted domain will be more accurate

and easier to obtain. However, we set as a requirement that the architecture of the system

be as domain independent as practical, and that configuration of the system for a

particular domain at runtime require only minimal effort. We envision a system that

could be configured for a particular domain by a developer, and for the moment we leave

open the question of whether the system could be refined (either automatically, by the

user, or by a developer) as it is being used in a particular domain.

Our approach to meeting these requirements is to use semantic networks to

represent both the meaning of natural-language policy statements, and particular

31

instances of systems in the domain of the policy set. As discussed in [Russell and

Norvig, 1995], semantic networks are logical reasoning systems that incorporate nodes

and relationships in a graph-like structure. A key advantage of semantic networks is that

they can be represented in a graphical format, which can help clarify characteristics that

might be obscure when presented in a text-based format. Conformance to, or violation of

a policy statement by a domain object is established by determining whether the semantic

network describing a policy statement is a sub-graph of the semantic network describing

the object in the policy’s domain. The material presented here reflects our belief that the

full power of the first order predicate calculus as a representation language (as used in

[Ong, 2001] and [Michael, Ong, Rowe, 2002]) may not be required to get useful

functionality out of a policy workbench. The semantic networks used in the following

work are less sophisticated than the first-order predicate calculus in the sense that they

provide no mechanism for universal quantification, yet at the same time they appear hold

the representational power required for useful functionality. This less comprehensive

representation provided by semantic networks, along with the fact that they can be

represented in an easy to visualize graphical format, promises to circumvent some of the

complexities that appear to have held back work based on the full first-order predicate

calculus.

A preliminary architecture is illustrated in Figure 6 below. This architecture is

considered to be preliminary because the details of several of its components, in

particular both of the Semantic Network Generators and the Background & Common

Sense Information source, will be specified more fully after the analysis of several policy

statements in Subsection IV D. In this subsection we focus only on what the various

architectural components are required to do, and not how they are supposed to do it.

Also, to make our discussion more concrete we do not present our architecture in its full

generality; rather we present our concepts in terms of a system that processes natural-

language policy statements for web sites. Generalizations that are not obvious will be

explicitly discussed.

Our natural-language input processing tool converts natural-language statements

into semantic networks. To illustrate how information in a semantic network format can

32

be processed, we describe not just the natural-language input processing system, but also

a computational technique for determining whether a domain object conforms to or

violates a given set of policies. In our more concrete discussions, this translates into a

system that determines whether a given web site conforms to the policy contained in a

natural-language web policy document.

Natural Language
Parser

Background &
Common Sense

Information

Application
“Context” for
Semantic Networks

Graph Matcher

Is the semantic network representing the policy
a subgraph of the semantic network representing
the domain object? (Y/N)

Domain Object (i.e., HTML
Code) Represented by

Semantic Network

Natural Language Policy
Represented by Semantic
Network

Semantic Network
Generator (A)

Semantic Network
Generator (B)

Description of domain object
(for example, HTML Code

for a Web Site)

Meaning
List

Natural Language
Policy Statements

NLIPT

Figure 7. Proposed architecture for a system that automatically determines whether an
arbitrary web site conforms to an arbitrary natural-language policy set. The Natural-
Language Input Processing Tool is at left in the grey box.

As shown in Figure 7, our architecture consists of several components of the

following types.

ß Natural-Language Parser A parser determines the structure of the input sentence

with respect to the rules of a formal grammar [Allen 1995]. The parsing process

results in a parse tree and a meaning list. The parse tree describes the structure of

the input sentence with respect to the formal grammar, and the meaning list is a

representation of the semantic structure of the input sentence. The meaning list

33

distinguishes the correct meaning and sense of each word used in the input

sentence.

ß Semantic Network Generators Each of the two semantic network generators

produces a semantic network. One semantic network represents the set of natural-

language policy statements; the other semantic network represents the domain

entity. In both cases, input from a Background and Common Sense Information

source provides supporting information for the development of the semantic

networks. The semantic networks could be implemented in any one of several

forms; for example, as sets of Prolog statements. The semantic networks for both

the natural-language statements of policy, as well as the system to be analyzed,

are envisioned to be generated at runtime; neither is to require any off-line

processing. However, the Semantic Network Generators themselves will be

domain dependent.

ß Graph Matcher The graph matcher determines whether an isomorphism, or

“matching,” exists between the semantic network representing a policy statement,

and a subset of the semantic network representing the domain object.

The system operates by generating two semantic networks: one to represent a

natural-language statement of policy, and another to represent one or more domain

objects. The semantic network representation of a natural-language statement of policy is

generated from the meaning list produced by a natural-language parser. Similarly, a

separate semantic network is generated to represent some number of objects in the

domain of the policy statement. To generate this semantic network, a grammar and

parser for domain objects will be developed.

The two semantic networks are fed into the Graph Matcher. The Graph Matcher

determines whether a semantic network representing a policy statement is a sub-graph of

the semantic network representing the domain object. This is similar to, but not identical

to, the problem of determining whether an isomorphism exists between two arbitrary

graphs. The problem of determining whether an isomorphism, or “matching,” exists

between two given graphs is very expensive to solve in general, but there exist techniques

34

that typically work well in practice. As pointed out by [Johnsonbaugh, 1984], “...

although every known algorithm to test whether two graphs are isomorphic requires

exponential or factorial time in the worst case, there are algorithms that can determine

whether ‘most’ pairs of graphs are isomorphic in linear time...” A low cost algorithm for

decomposing our problem (that of determining whether an isomorphism exists between a

graph and a subset of another graph) into the more broadly studied problem(that of

determining whether an isomorphism exists between two arbitrary graphs) will not be

investigated here, but will instead be left as a topic for future work.

We can gain a more solid understanding of this architecture by considering a

simple example. Suppose we wanted to determine whether a web site conformed to the

natural-language policy statement “Every web site must contain a link to the web-masters

e-mail address, so that users can easily report broken links.” This statement, minus the

superfluous phrase “so that users can easily report broken links,” can be represented by

the semantic network shown below in Figure 8.

Relationship =
“property”

Relationship =
“agent”

Attribute =
“type”

Relationship =
“destination”

Attribute =
“owner”

web

Relationship =
“part_of”

Relationship =
“object”

site contain link address

webmaster

e-mail

Relationship =
“property”

every must

Figure 8. A semantic network representation for the policy statement “Every web site
must hold a link to the web-masters e-mail address.” Arrows point from the second term
in a binary relationship to the first, or from an attribute to the entity that holds it.

35

To determine whether a web site conforms to, or violates, this policy statement,

the graph matcher determines whether the semantic network shown in Figure 8 can be

superimposed on, or “matched” with a semantic network representation of the domain

object in question, which in this case is a web site. A semantic network representation

for a web site might look as shown in Figure 9. The grey line in Figure 9 encloses a

semantic network that corresponds to the semantic network representation of the policy,

as shown in Figure 8; as a consequence, it can be concluded that the web site conforms to

the policy statement.

...

web

Address

Relationship =
“contains”

Relationship =
“destination”

Attribute =
“type”

Attribute =
“owner”

Text...

Relationship =
“label”

Attribute =
“value”

Relationship =
“part_of”

contain

Relationship =
“part_of”

Link

must

Relationship =
“part_of”

Relationship =
“part_of” webmaster@

xyz.edu

Webmaster

E-mail

every

site

Figure 9. Partial view of a semantic network representation for a hypothetical web site.
The semantic network shown in Figure 8 could be superimposed over the sub-network
within the grey loop.

This example prompts the following observations.

ß Depending on the domain to which the policy statement applies, it may be

necessary to perform multiple matches. For example, if the example statement

36

were changed to read “Every web page must contain a link to the web-master,”

the domain would consist of all the web pages at the site in question, and each

page would have to be checked separately. Searching for the existence of a single

item is easier than ensuring that a condition holds in all cases.

ß Certain characteristics of the semantic networks have to be standardized, so that

insignificant differences in terminology do not prevent a match from occurring.

In our example, a web page may “contain” a link, or may “hold” a link; we do not

want insignificant differences like this to prevent a match from occurring. This

and other problems with synonyms can be dealt with by replacing words with a

group of synonyms analogous to the “synonym sets” used in WordNet. For

example, we might stipulate that any word in the set {contain, hold} be changed

to “hold.”

In addition, some key issues involving the generation of the semantic networks

must be considered. The Semantic Network Generators are responsible for producing the

formal representations of both natural-language policy statements, and of domain objects.

In general, producing a formal semantic network representation for a domain object may

be as difficult as generating a computational form for natural-language, though it is

unlikely to be more difficult. The case of a web site is expected to be relatively simple,

because HTML is already a formal representation and thus only the structure of the

statements has to be changed. The time required for current natural-language parsers to

generate a parse tree and a meaning list is on the order of minutes, and the time required

for subsequent generation of a semantic network is not expected to be significant in

comparison. We anticipate that generation of a semantic network representation for

domain objects such as web pages should take roughly the same amount of time at worst.

It is worth noting that the two Semantic Network Generators operate independently of

each other, and could be run on separate processors.

It is also worth noting that a chart parser has polynomial time complexity

[Jurafsky and Martin, 2000], while graph matching requires time that increases

exponentially [Johnsonbaugh, 1984]. Because our architecture consists of a chart parser

providing input to a graph matcher, it might appear that the time complexity of our

37

architecture would be exponential. However, computational complexity is a description

of the worst possible case, and as mentioned above, graph matching can be done in linear

time for “most” graphs. It is also important to note that natural language sentences of 30

words or more are uncommon [Covington, 1994] so that we are very close to the origin

on any curve describing complexity. The result is that for our application, the difference

between an exponential and a polynomial time algorithm is not expected to be significant

from a practical point of view.

In contrast, generating and making effective use of formal representations for

natural-language will certainly be a challenging task. A significant problem is that there

are usually many ways to express a given statement of policy; that is, a given concept can

often be expressed using many synonymous words, but also a variety of sentence

structures. For our architecture to operate effectively, we require that all of these

“synonymous statements” be transformed into the same formal semantic network

representation. A lesser, but still significant concern is that different statements of

similar wording or structure be converted into distinct and appropriate representations.

B. PRELIMINARY WORK: ERROR TYPES AND CAUSES

In a broad sense, there are only two types of errors that our architecture might

commit: false negatives, and false positives. A false negative is said to have occurred

when a no is returned by the Graph Matcher when the proper answer is yes. A false

positive occurs when a yes is returned when the proper answer is no. In each case, the

yes or no refers to whether or not there is a match between the semantic network

representations of a policy statement and a domain object. These errors will occur when

the semantic network representation for a policy statement and/or domain object does not

accurately reflect its true characteristics.

A false negative occurs when the two graphs should match, but for some reason

do not. As a consequence of a false negative, it would appear that a domain object (such

as a web site) violated a policy statement, when in fact it did not. A false negative may

occur for a number of reasons, including the following.

38

ß If the semantic network representation for either a policy statement or a domain

object is incomplete or is otherwise missing important information, it is likely, but

not certain, that an error will occur. In the case where the graphs should not

match, and the omission does not cause them to match, the report from the graph

matcher will happen to be correct. However, a missing node or link from one of

the two semantic networks will prevent a match from occurring so that a domain

object that does conform to policy will appear as if it does not.

ß If the two semantic networks use different terminology to represent the same

concept (that is, if the terminology in the two semantic networks is inconsistent),

then it may incorrectly appear that policy is being violated.

Conversely, a false positive occurs when the graphs should not match, but for

some reason do. As a consequence of a false positive, a domain object (such as a web

site) that conformed to a policy statement would be classified as being in violation. A

false positive may occur for a number of reasons, including the following.

ß As suggested above, if the policy semantic network is incomplete such that it is

missing a part that would have caused a violation (i.e., it is missing a part that

would not ‘fit’ into the domain object semantic network), then an incorrect match

will be indicated.

ß Similarly, if the terminology used to create the two semantic networks is

inconsistent such that nodes or links that are in fact different appear to be the

same, then it may incorrectly appear that the two graphs can be matched.

In considering whether false positives or false negatives lead to the more serious

consequences, we might reasonably assume that for the most part, domain objects

conform to policy, and that our architecture provides the most significant information

when it identifies violations of policy. Under this assumption, false positives would be

the most costly type of error, because actual violations would go undetected. That is,

among the many true positives indicating the many domain objects conforming to a

particular policy statement, there would be distributed a small number of false positives,

each corresponding to a domain object which is in violation of policy, but which is

39

reported as being in conformance. Conversely, under this assumption false negatives

would be relatively (though not completely) harmless: the suspect domain object would

be investigated and acquitted from being in violation, with the only resultant cost being

the time spent in the investigation. Under the (somewhat odd) assumption that domain

objects only rarely conformed to policy, we reach the symmetrically opposite conclusion

that false negatives are the most costly and false positives are relatively harmless. In the

case where domain objects show no preference for either conformance to, or violation of

policy, both types of error would appear to be about equally costly.

As an aside, we would expect that a given system for detecting policy violations

could “trade-off” false positives and false negatives. That is, for a given fixed system,

the number of false positives could be reduced only through a corresponding increase in

false negatives, with the total number of errors remaining about the same. Identifying

how the parameters of a system must be changed to adjust this trade-off should be a part

of any design.

There are a couple of potential approaches to reducing errors like these. One

would be to generalize in some way what we mean by a “match” between two semantic

networks. One of the simpler ways in which ambiguity can be reduced is through the use

of a single representative term to stand for collections of synonyms.

Other types of ambiguity that can lead to errors may be more complex to deal

with. Most statements of policy (as well as most statements in any language) can be

expressed in a number of different ways using a number of different sentence structures.

It is expected that different sentence structures expressing the same idea may produce

meaning lists that are different. At the very least, we know that many natural-language

statements contain extraneous elements, or terms that can be eliminated without changing

the semantics of the sentence. For example, a policy statement might require

“compliance with the provisions of Security Document XYZ.” However, this dictate

could more concisely require “compliance with Security Document XYZ,” because the

expression “the provisions of” is superfluous. Problems like this one can be fixed with a

collection of rule-based transformations: after a meaning-list has been found, a collection

of hand-constructed rules can be applied to eliminate known redundancies and to apply

40

simplifications. Standard synonyms can be substituted into a meaning list using the same

technique.

C. PRELIMINARY WORK: A TAXONOMY FOR NATURAL-LANGUAGE
 POLICY STATEMENTS

Table 1 shows 13 statements of policy taken from a policy document, circa 2001,

for web sites at the Naval Postgraduate School. Several of these policy statements are

made up of more than one sentence, so that Table 1 contains a total of 16 sentences. (In

subsequent discussions, we will distinguish between different sentences in a policy

statement using a decimal notation; for example, the second sentence of Policy Statement

1 will be referred to as Policy Statement 1.2.) These statements form a small but

representative cross section of that policy document and of statements that we would

expect to find in policy documents covering the same domain. In this subsection we

create a simple set of categories, or a taxonomy, within which these and other natural-

language policy statements can be classified.

A careful reading of the statements in Table 1 reveals that many of them are not,

strictly speaking, statements of policy. That is, many of these statements are not

imperatives that place the reader or any other domain object under an obligation to carry

out an action or satisfy a requirement. Furthermore, this is not due to the lack of

supporting context; placing any of these “non-policy” statements back within their full

original context would not change this aspect of them. However, most, if not all of the

statements can be interpreted as policy statements that have been phrased in informal,

non-standard ways; this is because many of these policy statements are essentially speech

acts that are worded as suggestions, but are intended to be interpreted as statements of

policy. It is reasonable to expect that many natural-language policy documents will

contain phrases that can be properly interpreted only when viewed as speech acts.

Similarly, definitions commonly appear in policy documents. Though in a strict

sense definitions are not statements of policy, they can make up an important part of a

policy document, because proper interpretation of the surrounding policy statements

requires correct use of the definitions. In fact, in some cases the dividing line between a

41

definition and a policy statement may not be clear. For example, after a description of a

certain type of information we may be told that “Such information is designated FOUO.”

It could be argued that this a definition, but it could also be argued that this is a statement

of policy. In any case, formal analysis of policy needs to take into consideration

definitions contained within a policy document.

Any web site collecting personal information must comply with the provisions of reference (d).
Network identification and Internet protocol addresses are not considered personal data.

Statement 10

Text and graphics that move can be particularly annoying. Use blinking text, scrolling marquees,
animated gifs and Java applets very sparingly, if at all.

Statement 9

Limit the number of different font styles and colors on a page. A good rule of thumb is to use no more
than three different fonts on a page.

Statement 8

If you choose to use a background image or background color, make sure your text is readable. White
or light-colored backgrounds are the most readable.

Statement 7
Use numbered or bulleted lists to condense text and to break up the page visually.Statement 6

Designers should recognize that graphics consume significant bandwidth. Provide thumbnail graphics
of large graphics with a link to the full version. Graphics will also load faster if the height and width
are given in the IMG SRC tag.

Statement 5

Web pages are dynamic, evolving documents that can frequently change. “Under construction” notices
should be used sparingly.

Top-level organizational pages should have the same “look and feel” so that users will be able to know
when they have navigated off of the main pages.

Avoid long lists of hot links on 'top-level' organizational pages; a single link to a separate links page is
much more effective.

Top-level web pages should be considered a directory of information contained in subsequent pages
and should not contain detailed subject matter. Specifics should reside on subsequent pages.

Statement 4

Statement 3

Statement 2

Statement 1

Table 1. Ten natural-language policy statements obtained from the policy set for web
pages at the Naval Postgraduate School, circa 2001. Several of these statements consist
of more than one sentence; there is a total of 18 sentences contained within the 10
statements.

As discussed above, many of these policy statements are couched as suggestions

so that a proper understanding requires interpretation in terms of speech acts. Many of

the statements are phrased as polite recommendations; as a consequence, the word

“should” needs to be replaced by the word “must.” Also, a suggestion that something is

desirable must be interpreted as an imperative that must be accomplished. For example,

Statement 7 in Table 1 makes some suggestions and observations regarding readable text;

interpreted as a statement of policy, it essentially states that pages are readable to the

extent that their color resembles white or black. To get a fuzzy measure of how much an

arbitrary color differs from grey, and thus how “readable” it is, we have to find out how

“far away from grey” that color is. One possible way to do this is to note that in the RGB

color space, various shades of grey correspond to color vectors with equal red, green, and

42

blue components. Given an arbitrary color (a, b, c) in RGB space, our problem translates

into finding the value of grey that is closest to it; that is, we want to find the grey vector

(j, j, j) such that the scalar magnitude (a-j)2+(b-j)2+(c-j)2 is a minimum.

We created a simple classification, or taxonomy, of natural-language policy

statements as shown in Table 2. The taxonomy appears to be comprehensive, in the

sense that all statements from Table 1 can be placed into (at least) one of the six

categories. Only one category in Table 2 does not have a representative from Table 1:

that category, Category 5 contains titles, section headings, captions for figures and tables,

and other text that is a part of a policy document, but that is not intended to be interpreted

as policy. These statements can be thought of as summaries that indicate the type of

information to be found in certain specified areas, and they may provide important

guidance that could be exploited by a natural-language processor.

Examples from Table 1Category Description

5
4
3

2
1

Category No.

Statement 10.2Statements of Meta-Policy
Not represented in Table 1

Statements 7.2, 10.1

Statements 5.1, 7.2
Statements 1.1, 1.2, 2, 3, 4.1, 4.2, 5.2,
5.3, 7.1, 8.1, 8.2, 9.1 9.2

Formatting and Other Non-Policy Statements

Definitions

Statements of Policy, including Recommendations, Statements of
Advice, and Other Speech Acts that can be Interpreted as Policy

Statements of Fact or Opinion

Table 2. A simple breakdown, or taxonomy, of the sentences that appear in the policy
statements of Table 1. All sentences from Table 1 fall into one of the first four
categories. Note that this table uses our convention in which decimal notation indicates
the different sentences of a single policy statement; for example, Statement 5.2 refers to
the second sentence of Policy Statement 5, etc.

Some of the items in Table 1 are simple observations of fact, or simple opinions.

Such statements may imply policies that are very permissive of exceptions. However, for

opinions or observations of fact, it may be less clear exactly what the intended statement

of policy is. A study of Table 1 indicates that converting a statement of fact or opinion

into a policy requires some nontrivial “creative thought” on the part of the converter.

Our taxonomy appears to be comprehensive, but it does not have particularly

strong discriminating power: that is, we expect to see a lot of overlap between

categories. For example, sentence 7.1, “If you choose to use a background image or

43

background color, make sure your text is readable,” is classified as a statement of advice

because of the phrase “make sure”- the very presence of this phrase in a policy statement

implies that some leeway is permissible. However a consideration of speech acts makes

it clear that the proper interpretation of this sentence is as a policy.

The statements in Table 1 suggest that some ambiguities will be relatively easy to

deal with: in statement 7, “Provide thumbnail graphics of large graphics with a link to

the full version,” we might define the fuzzy term “large” to mean “greater than 250 kb.”

We may even get more refined by measuring the sizes of all graphics on a web site, and

classifying as ‘large’ any graphic with size that falls in the top 30%. Operators for

manipulating fuzzy terms, as discussed in Section II.G.2 could then be applied.

Because fuzzy descriptors are so valuable in dealing with ambiguities in natural-

language text, we identified and characterized all the fuzzy descriptors that appear in our

collection of policy statements. As shown in Table 3, we characterized each fuzzy

descriptor through its grammatical category, the dimension along which it is fuzzy, and

the spot or interval along the fuzzy dimension that the fuzzy descriptor specifies.

44

Large amount of work
remaining to be done

Amount of work remaining to be
done

Adjectiveunder construction
(Statement 4)

Closely related to a person as
an individual

Relating to a person as an
individual vs. Relating to a group
that a person belongs to

Low frequencyFrequency of appearance
Adverbial

Phrase

EmphasizeEmphasize following term vs. De-
emphasize following term

UnpleasantPleasant vs. Unpleasant
More than almost all othersAmount
Amount allowed is little or noneAmount that is to be allowed

Characteristic holds stronglyDegree to which a characteristic
(such as readability) holds

Containing little or no
information

Containing information vs. Not
containing information

To be used very little, or not to
be used

Degree to which something may
be used

Almost free from colorStrong color vs. Free from color
Free from colorStrong color vs. Free from color
Easy to readEasy to read vs. Not easy to read

A small number (approximately
two to six)

Number of parts into which a
whole is decomposed

Make smaller to a moderate
degree

Degree to which something is
made smaller

Less time requiredAmount of time required in
comparison to average case

Adverb
At or near 100%Fraction of a whole
Large file sizeSize of a graphic file
Small physical sizePhysical size of a graphicAdjective

Large amountAmount

Large number of changesNumber of changes per unit time

Emphasis on appearance and
interface mechanisms

Constant changeConstant vs. Intermittant change

Large amount of movementAmount of movement or change

First or close to firstPlace in time sequence of pages
visited by a typical user

Appearance and interface
mechanisms vs. Content

Very capableCapability for producing a result

Small sized partsSize of parts that make up whole

Large amounts of specific info

Many linksNumber of links
Popularity of a web link

Adjective

Adverb

Adverb
Adjective
Adjective

Verb

Adjective
Adjective
Adjective
Adjective

Adjective

Verb

Verb

Adjective
Adjective

Adjective

Adjective
Adjective

Adjective

Adjective

Noun
Adjective

Adjective

Adjective

Noun

Adjective Very popular

if at all (Statement 9)
sparingly (Statement 9)

very (Statement 9)
annoying (Statement 9)

most (Statement 7)
light-colored (Statement 7)

white (Statement 7)
readable (Statement 7)

background (Statement 7)

condense (Statement 6)

full (Statement 5)
large (Statement 5)

thumbnail (Statement 5)

significant (Statement 5)

frequently (Statement 4)
evolving (Statement 4)

dynamic (Statement 4)

main (Statement 3)

look and feel (Statement 3)
effective (Statement 2)

hot (Statement 2)
long (Statement 2)

personal (Statement 10)

particularly (Statement 9)
limit (Statement 8)

break up (Statement 6)

faster (Statement 5)

specifics (Statement 1)

Grammatical
Category

Where on Dimension the
Fuzzy Descriptor Applies

Fuzzy Dimension

detailed (Statement 1)

Fuzzy Descriptor

Amount of specific information

Table 3. Fuzzy descriptors and their characteristics from the policy statements of Table
1.

The entries in Table 3 provide valuable information about how values for fuzzy

descriptors can be established for a given web site or page. In general, the value of a

fuzzy descriptor can be established for a particular web site or page by taking

45

measurements over a population of such entities, and then by finding where the particular

web site or page falls in the resulting distribution. For example, in Policy Statement 1,

we can quantify the amount of “detailed subject matter” on a top-level web page by

measuring, over a representative population of web sites, the amount of text on the top-

level web pages. A top-level page that had more text than, say, 80% of the population

would have a fuzzy value of 0.8 for “detailed subject matter.” To determine whether or

not a fuzzy descriptor applies, a threshold could be specified; for example, a top-level

page containing more text than 75% of the pages in the population could be said to

contain “detailed subject matter.” Though the amount of text on a web page provides

only a coarse measure of the amount of information it contains, it has the significant

practical advantage that it is relatively easy to measure.

Most of the fuzzy descriptors in Table 3 can be established in a like manner.

Whether or not a list is “long”, a link is “hot,” or a graphic is “large” can be established

by the position of each entity within the population. Vector-space methods can be used

to some extent in dealing with colors and color-spaces. Whether a certain type of notice

is “used sparingly” could be determined by counting the fraction of pages on a site where

the notice appears; if the fraction is less than some threshold, say 0.2, it could be said that

the notice has in fact been used sparingly. Determining whether two web pages have the

same “look and feel” might be accomplished through the use of a list of the

characteristics that make up the “look and feel” of a web page. A count of places where

the lists of two web pages differ could provide a coarse measure of whether they share

the same “look and feel.” Weightings could be assigned to characteristics on the list to

provide a more refined measure of difference.

D. CASE STUDY: ANALYSIS OF NATURAL-LANGUAGE POLICY
 STATEMENTS

The previous subsections have contained preliminary discussions of our proposed

representation and proof technique for formal analysis of natural-language policy

statements. Though these discussions have helped us establish a vocabulary with which

to work, and have even provided some insights into the potential strengths and

46

weaknesses of our approach, the following two important questions merit further

consideration.

ß What sort of ambiguities can we expect to see in natural-language policy

documents? How should these ambiguities be dealt with?

ß Will it be possible to extract from the policy statement the domain to which the

policy applies? If not, how will this issue be dealt with?

To answer these questions, a case study was carried out on the ten natural-

language policy statements in Table 1. In preparation for this case study, during the

winter of 2002 Professor N. Rowe generated meaning lists for the 18 sentences contained

in Table 1. This was accomplished by passing those statements through the MARIE

parser [Guglielmo and Rowe, 1996]. The MARIE parser had previously been updated

with new parse rules and dictionary entries. These updates to the MARIE parser were

made before the statements contained in Table 1 had been obtained; thus the meaning

lists presented below are representative of what the MARIE parser would generate from

arbitrary natural language policy statements.

Our case study is presented in the remainder of this subsection. For each of the

thirteen natural-language policy statements, we have determined the following

particulars.

a) The Statement and its Meaning List. The meaning list was placed in a table in

text format, and for some meaning lists a graphical representation was generated.

Also, we noted whether the statement was one of operational, goal-oriented, or

meta-policy, as was the statement’s place in our taxonomy.

b) Authors Intention. In some cases, the intention of the policy statements author

was unclear. We made an attempt to interpret the statement in a “reasonable”

way.

c) Entities, Relationships, and Attributes. Entities, attributes, and relationships are

taken from the meaning lists. Entities are anything that appears as the second

47

argument to the binary predicate “a_kind_of.” Relationships are the predicate

names, and attributes are the second arguments to property predicates.

d) Domain of Policy Statement. The domain of the policy statement was

established; that is, we determined the domain objects that would have to be put

into semantic network form for conformance to this policy statement to be

checked.

e) Modal Auxiliaries. Modal auxiliaries were identified.

f) Fuzzy Descriptors. Quantifiers, whether or not fuzzy, were identified.

g) Anaphoric References. Anaphoric references were identified and resolved.

h) Speech Act Theory. Speech acts contained within the policy statement were

identified and described.

i) Miscellaneous Observations. In some cases, there are significant observations

that fit nowhere else are discussed here here. In cases where there are no such

observations, this heading is dropped.

Words appearing in meaning lists are encoded with Wordnet sense numbers. The

encoding is based on the sum of two numbers: one number indicating the part of speech,

and the other number indicating the particular word sense from Wordnet. The numbers

indicating parts of speech consist of zero for nouns, 50 for adjectives, 100 for verbs, 150

for adverbs, and 199 for other parts of speech. The encoding can be clarified through an

example. The term “see-108” indicates a meaning which is the same as that of the eighth

verb sense of the word “see” in Wordnet. Predicates in meaning lists are assertions that

the first argument has the property indicated by the head of the predicate, with the value

that appears as the second argument. In an informal sense, the head of a predicate can be

placed between the two arguments to make a valid assertion; for example, the predicate

“a_kind_of(v4,substance-2)” can be informally interpreted to mean that “constant v4 is a

kind of substance.” Terms of the form “vXXX,” where X is a digit, are constants. These

parser-invented constant names are used to represent distinct entities. Variable names

have significance only within individual meaning lists.

48

It should be noted that in all graphical representations of meaning lists, the arrows

point from the second term in a binary relationship to the first, and from an attribute

value to the entity that holds the attribute (just as in Figures 8 and 9). Appendix A

contains documentation for the software used to generate the graphical representations of

meaning lists.

1. Policy Statement 1

a) The Statement and its Meaning List. Policy Statement 1 is: “Top-level web

pages should be considered a directory of information contained in subsequent pates and

should not contain detailed subject matter. Specifics should reside on subsequent pages.”

Both the first and second sentences of this policy statement fit into our taxonomy as

recommendations or statements of advice. The meaning lists for this policy statement are

given in text form in Tables 4 and 5, and in graphical format in Figures 10 and 11.

[a_kind_of(v886,see-108),tense(v886,past),
marker(v886,passive),
tense(v886,should), object(v886,v898),
a_kind_of(v898,directory-1),
quantification(v898,a), part_of(v898,v903),
a_kind_of(v903,information-2),
object(v912,v903), a_kind_of(v912,contain-103),
tense(v912,pastpart), inside(v912,v936),
a_kind_of(v936,page-1), quantification(v936,plural),
property(v936,subsequent-51), a_kind_of(v944,contain-103),
quantification(v944,plural), property(v944,not-151),
tense(v944,should), object(v944,v4),
a_kind_of(v4,substance-2), property(v4,detailed-52),
agent(v886,v874), agent(v944,v874),
a_kind_of(v874,page-1), quantification(v874,plural),
part_of(v874,v865), a_kind_of(v865,web-0),
has_property(v874,v342), a_kind_of(v342,level-1),
property(v342,top-52), distinct(v886,v944)]

Meaning List

Top-level web pages should be considered a directory of
information contained in subsequent pages and should not
contain detailed subject matter.

First Sentence of
Policy Statement 1

Table 4. The meaning list for the sentence “Top-level web pages should be considered a
directory of information contained in subsequent pages and should not contain detailed
subject matter.”

49

[a_kind_of(v8,live-101), quantification(v8,plural),
tense(v8,should), on(v8,v156),
a_kind_of(v156,page-1), quantification(v156,plural),
property(v156,subsequent-51), agent(v8,v1),
a_kind_of(v1,specific-0), quantification(v1,plural)]

Meaning List

Specifics should reside on subsequent pages.Second Sentence of
Policy Statement 1

Table 5. The meaning list for the second sentence of Policy Statement 1: “Specifics
should reside on subsequent pages.”

b) Authors Intention. The authors intention here is clear: this policy statement

requires that web sites have a structure such that a page at or near the entry point or

“home page” of the site provides organized access to other pages in the web site.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 1:
Entities: a_kind_of(v886,see-108)

a_kind_of(v898,directory-1)
a_kind_of(v903,information-2)
a_kind_of(v912,contain-103)
a_kind_of(v936,page-1)
a_kind_of(v944,contain-103)
a_kind_of(v4,substance-2)
a_kind_of(v874,page-1)
a_kind_of(v865,web-0)
a_kind_of(v342,level-1)

Relationships: a_kind_of,tense, marker, object, quantification, part_of, inside,
property, agent,

has_property, distinct
Attributes:

tense(v886,past),
marker(v886,passive),
tense(v886,should),
object(v886,v898),
quantification(v898,a),
tense(v912,pastpart),
quantification(v936,plural),
property(v936,subsequent-51),
quantification(v944,plural),
property(v944,not-151),
tense(v944,should),
property(v4,detailed-52),
quantification(v874,plural),
part_of(v874,v865),

50

property(v342,top-52)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 1:
Entities: a_kind_of(v8,live-101),

a_kind_of(v156,page-1),
a_kind_of(v1,specific-0)

Relationships: a_kind_of, quantification, tense, on, property, agent
Attributes:

quantification(v8,plural),
tense(v8,should),
quantification(v156,plural),
property(v156,subsequent-51),
quantification(v1,plural)

d) Domain of Policy Statement. This policy statement has a domain consisting of

entire web sites.

e) Modal Auxiliaries. The modal auxiliary should appears three times in this

policy statement: twice in the first sentence, and once in the second sentence.

f) Fuzzy Descriptors. “Detailed” and “specifics” are fuzzy descriptors.

g) Anaphoric References. The term “specifics” in the second sentence refers to

the “detailed subject matter” mentioned in the previous sentence.

h) Speech Act Theory. The word “should,” is used in this policy statement as a

polite way of stating what must hold, and the expression “...should be considered...” is a

polite way of saying that web designers are required to ensure that top-level web pages

have the characteristics of a directory of information. More importantly, this policy

statement implies that it is common for web designers to put too much detail in their top-

level pages. In most, if not all of the policy statements that we’ll examine, statements

made by the policy author address misunderstandings that web designers are perceived to

have.

i) Miscellaneous Comments. The statement of policy “specifics must reside on

subsequent pages” can be misinterpreted with improper usage of the term “must.” What

is really being said here is that “specifics, if they exist, must reside on subsequent pages;”

there is no need to generate specifics to place on subsequent pages if they do not already

51

exist. Perhaps a clearer way to phrase the statement is that “specifics may not reside on

the page in question.” Assuming that we can determine exactly what constitutes

“specifics,” probably the most effective way to check whether this policy is being

conformed to is to create a semantic network representation for “specifics,” and to see if

the pages specified by the policy statement contain them or otherwise have them as

attributes; if so, the policy is being violated.

A reasonable simplification of the first sentence would eliminate the phrase

“should be considered a directory of information contained in subsequent pages,” and

would instead simply state that “top-level web pages must not contain detailed

information.” Also, we interpret the word “subsequent” to mean “subsequent in time.”

That is, a “subsequent” page is one that a typical user would navigate to after the top-

level page. We can infer that a “subsequent page” is one that is connected to the top-

level page by some link sequence.

Finally, the phrase “detailed subject matter” in the first sentence can be simplified

into “details.” This transformation can be represented with the following rule.

detailed subject matter Æ details

52

B

A

Figure 10. Graphical representation of the meaning list for Policy Statement 1.1: “Top-
level web pages should be considered a directory of information contained in subsequent
pages and should not contain detailed subject matter.” A semantic network
representation for “Top-level web pages” is enclosed in the grey loop labeller “A,” and a
semantic network representation for “detailed subject matter is enclosed in the grey loop
labeller “B.”

■^^P'iKxndO

level1

pagel

guantxfxcatxo
aKxndOJ

53

Figure 11. Graphical representation of the meaning list for Policy Statement 1.2:
“Specifics should reside on subsequent pages.”

2. Policy Statement 2

a) The Statement and its Meaning List. Policy Statement 2 is “Avoid long lists of

hot links on ‘top-level’ organizational pages; a single link to a separate links page is

much more effective.” Policy Statement 2 fits into our taxonomy as a recommendation

or statement of advice that can be interpreted as a policy statement. The meaning list for

this policy statement is given in text form in Table 6.

specific

aKindO

quant if icat io|n
quantif

subsequent51

54

[a_kind_of(v4,avoid-101),
quantification(v4,plural), object(v4,v31),
a_kind_of(v31,register-1), quantification(v31,plural),
property(v31,long-52), subject(v31,v78),
a_kind_of(v78,link-0), quantification(v78,plural),
property(v78,hot-55), on(v78,v601),
a_kind_of(v601,page-1),quantification(v601,plural),
property(v601,organizational-51), has_property(v601,v448),
a_kind_of(v448,level-1),property(v448,top-52),
a_kind_of(v726,be-101),property(v726,effective-54),
relationship(effective-54,v753),
property(v753,much-151), property(v753,more-151),
agent(v726,v633), a_kind_of(v633,link-0),
property(v633,single-51), quantification(v633,a),
to(v633,v716), a_kind_of(v716,page-1),
agent(v703,v716), a_kind_of(v703,link-0),
quantification(v703,plural),
property(v703,separate-51), quantification(v716,a)]

Meaning List

Avoid long lists of hot links on ‘top-level’ organizational
pages; a single link to a separate links page is much more
effective.

Policy Statement 2

Table 6. The meaning list for Policy Statement 2: “Avoid long lists of hot links on ‘top-
level’ organizational pages; a single link to a separate links page is much more effective.”

b) Authors Intention. The authors intention here is clear: a separate “links” page

is required, and mixing links with other types of information is forbidden, especially on

pages at or near the home page.

c) Entities, Relationships, and Attributes for Policy Statement 2:
Entities:

a_kind_of(v4,avoid-101),
a_kind_of(v31,register-1),
a_kind_of(v78,link-0),
a_kind_of(v601,page-1),
a_kind_of(v448,level-1),
a_kind_of(v726,be-101),
a_kind_of(v633,link-0),
a_kind_of(v716,page-1),
a_kind_of(v703,link-0),

Relationships: a_kind_of, quantification, object, property, subject, on,
has_property, relationship, agent, to

Attributes:
quantification(v4,plural),
quantification(v31,plural),
property(v31,long-52),
quantification(v78,plural),
property(v78,hot-55),

55

quantification(v601,plural),
property(v601,organizational-51),
property(v448,top-52),
property(v726,effective-54),
relationship(effective-54,v753),
property(v753,much-151),
property(v753,more-151),
property(v633,single-51),
quantification(v633,a),
quantification(v703,plural),
property(v703,separate-51),
quantification(v716,a)

d) Domain of Policy Statement. This policy statement applies to web sites as a

whole.

e) Modal Auxiliaries. None.

f) Fuzzy Descriptors. Fuzzy descriptors are “long,” “hot,” and “effective.”

g) Anaphoric References. “Top-level organization pages” is an anaphoric

reference to the top-level pages in Policy Statement 1.

h) Speech Act Theory. Saying that “X should be avoided” is being used here to

say that X should not occur. Also, the statement that “Y is more effective” is a polite

way of saying that Y is required.

i) Miscellaneous Comments. An ellipsis phenomenon (the omission or

suppression of parts of a word or sentence) occurs in this policy statement: “a single link

to a separate links page” gives a destination, but the source of the link is not explicitly

stated, and the reader has to infer that the source is the “top-level page.”

Also, the following simplifying transformation should be applied.

X is more effective Æ X should be done

3. Policy Statement 3

a) The Statement and its Meaning List. Policy Statement 3 is “Top-level

organizational pages should have the same ‘look and feel’ so that users will be able to

know when they have navigated off of the main pages.” It fits into our taxonomy as a

56

recommendation or statement of advice that can be interpreted as a statement of policy.

The meaning list for this policy statement is given in text form in Table 7.

[a_kind_of(v903,have-101),
quantification(v903,plural), tense(v903,should),
object(v903,v4), a_kind_of(v4,'look and feel'-0),
property(v4,quasi-51),property(v4,same-51),
quantification(v4,the), so(v903,v7),
a_kind_of(v7,be-101), tense(v7,future),
object(v7,v1164), a_kind_of(v1164,entity-1),
property(v1164,able-51),
for(v7,v1184), a_kind_of(v1184,know-103),
object(v1184,v2527), a_kind_of(v2527,period-2),
during(v1194,v2527), a_kind_of(v1194,navigate-103),
tense(v1194,past), tense(v1194,perfect), off(v1194,v1255),
a_kind_of(v1255,page-1), property(v1255,primary-56),
quantification(v1255,the), agent(v1194,v1199),
a_kind_of(v1199,people-1), anaphoric(v1199),
tense(v1184,infinitive), agent(v7,v948),
a_kind_of(v948,user-1), quantification(v948,plural),
agent(v903,v894), a_kind_of(v894,page-1),
quantification(v894,plural), property(v894,organizational-51),
has_property(v894,v377), a_kind_of(v377,level-1),
property(v377,primary-56)]

Meaning List

Top-level organizational pages should have the same ‘look
and feel’ so that users will be able to know when they have
navigated off of the main pages.

Policy Statement 3

Table 7. The meaning list for the sentence “Top-level organizational pages should have
the same ‘look and feel’ so that users will be able to know when they have navigated off
of the main pages.”

b) Authors Intention. This policy statement requires that pages on a web site, and

especially at or near the home page, have the same “look and feel.” Except for the

definition of exactly what qualifies as “look and feel,” the authors intention here is clear.

c) Entities, Relationships, and Attributes for Policy Statement 3:
Entities:

a_kind_of(v903,have-101),
a_kind_of(v4,'look and feel'-0),
a_kind_of(v7,be-101),
a_kind_of(v1164,entity-1),
a_kind_of(v1184,know-103),
a_kind_of(v2527,period-2),
a_kind_of(v1194,navigate-103),
a_kind_of(v1255,page-1),
a_kind_of(v1199,people-1),
a_kind_of(v948,user-1),
a_kind_of(v894,page-1),

57

a_kind_of(v377,level-1)
Relationships: a_kind_of, quantification, tense,object, property, so,or, during, off,

agent, anaphoric,
has_property

Attributes:
quantification(v903,plural),
tense(v903,should),
property(v4,quasi-51),
property(v4,same-51),
quantification(v4,the),
tense(v7,future),
property(v1164,able-51),
tense(v1194,past),
tense(v1194,perfect),
property(v1255,primary-56),
quantification(v1255,the),
tense(v1184,infinitive),
quantification(v948,plural),
quantification(v894,plural),
property(v894,organizational-51),
property(v377,primary-56)

d) Domain of Policy Statement. This policy statement applies to all web sites.

e) Modal Auxiliaries. The modal auxiliary should appears once in this policy

statement. Also, “will be able to” should be interpreted as “can,” and thus is a modal

auxiliary.

f) Fuzzy Descriptors. “Look and feel” and “main” are fuzzy descriptors.

g) Anaphoric References. “Top-level organizational pages” is an anaphoric

reference to Policy Statement 1.

h) Speech Act Theory. The author justifies this policy statement with the phrase

“so that users will be able to know when they have navigated off of the main pages.”

Justification is not necessary in a statement of policy, and it has an interesting effect here:

it moves this policy statement from being a purely operational statement of policy to one

that is to some extent goal-oriented.

i) Miscellaneous Comments. The following transformations can be applied.

will be able to Æ can
navigate off of Æ leave

58

4. Policy Statement 4

a) The Statement and its Meaning List. Policy Statement 4 is “Web pages are

dynamic, evolving documents that can frequently change. ‘Under construction’ notices

should be used sparingly.” The first sentence of this policy statement fits into our

taxonomy as a statement of fact, and the second sentence fits into our taxonomy as a

statement of advice. The meaning lists for this policy statement are given in text form in

Tables 8 and 9. The meaning list for the first sentence of this policy statement is given in

graphical form in Figure 12.

Meaning List [a_kind_of(v30,be-108),
quantification(v30,plural), object(v30,v55),
a_kind_of(v55,document-2), quantification(v55,plural),
property(v55,dynamic-52), agent(v50,v55),
a_kind_of(v50,evolve-104),
distinct(v44,v50), agent(v63,v55),
a_kind_of(v63,alter-103), quantification(v63,plural),
property(v63,frequently-151),
tense(v63,can), agent(v30,v16),
a_kind_of(v16,page-1), quantification(v16,plural),
part_of(v16,v1), a_kind_of(v1,web-0)]

Web pages are dynamic, evolving documents that can
frequently change.

First Sentence of
Policy Statement 4

Table 8. The meaning list for the first sentence of Policy Statement 4: “Web pages are
dynamic, evolving documents that can frequently change.”

Meaning List [a_kind_of(v99,apply-107),
property(v99,sparingly-150),
quantification(v41,plural),tense(v99,past),
tense(v99,should),object(v99,v24),
a_kind_of(v24,notice-
2),quantification(v24,plural),object(v24,v16),
a_kind_of(v16,construction-6),
property(v16,under-50),property(v16,quasi-51)]

“Under construction” notices should be used sparingly.Second Sentence of
Policy Statement 4

Table 9. The meaning list for the second sentence of Policy Statement 4: “‘Under
construction’ notices should be used sparingly.”

b) Authors Intention. The first sentence of this policy statement is a simple

statement of fact. It provides motivation for the second sentence, which except for the

59

somewhat ambiguous term “sparingly,” is a clear statement of policy. Except for the

term “sparingly,” the authors intention here is clear.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 4.
Entities: a_kind_of(v30,be-108),

a_kind_of(v55,document-2),
a_kind_of(v50,evolve-104),
a_kind_of(v63,alter-103),
a_kind_of(v16,page-1),
a_kind_of(v1,web-0)

Relationships: a_kind_of, quantification, object, property, agent, distinct, tense,
part_of

Attributes:
quantification(v30,plural),
quantification(v55,plural),
property(v55,dynamic-52),
quantification(v63,plural),
property(v63,frequently-151),
tense(v63,can),
quantification(v16,plural)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 4.
Entities: a_kind_of(v99,apply-107),

a_kind_of(v24,notice-2),
a_kind_of(v16,construction-6)

Relationships: a_kind_of, property, quantification, tense, object
Attributes:

property(v99,sparingly-150),
quantification(v41,plural),
tense(v99,past),
tense(v99,should),
quantification(v24,plural),
property(v16,under-50),
property(v16,quasi-51)

d) Domain of Policy Statement. This policy statement can be applied to any web

site.

e) Modal Auxiliaries. The modal auxiliary “can” appears in the first sentence,

and the modal auxiliary “should” appears in the second sentence of this policy statement.

f) Fuzzy Descriptors. Fuzzy descriptors in this policy statement are “dynamic,”

“evolving,” “frequently,” “under construction,” and “sparingly” are fuzzy descriptors.

g) Anaphoric References. None.

60

h) Speech Act Theory. The term “should” is used in the second sentence of this

policy statement as a polite substitute for the word “must.” More significantly, by simply

stating the first sentence of this policy statement, the author infers that some people

responsible for web pages are not aware that pages frequently change.

i) Miscellaneous Comments. A key ellipsis is the omission of “on [web] pages”

from the end of the last sentence.

Figure 12. Graphical representation of the meaning list for the sentence “Web pages are
dynamic, evolving documents that can frequently change.”

5. Policy Statement 5

a) The Statement and its Meaning List. Policy Statement 5 is: “Designers should

recognize that graphics consume significant bandwidth. Provide thumbnail graphics of

alterlO^

pa^L

a£ijdO:

61

large graphics with a link to the full version. Graphics will also load faster if the height

and width are given in the IMG SRC tag.” The first sentence of this policy statement fits

into our taxonomy as a statement of fact; the second sentence fits into our taxonomy as a

statement of policy; and the third sentence fits into our taxonomy as a statement of fact.

The meaning lists for this policy statement are given in text format in Tables 10, 11, and

12. The meaning lists for the first and second sentences of this statement are given in

graphical form in Figures 13 and 14.

Meaning List [a_kind_of(v36,recognize-108), quantification(v36,plural),
tense(v36,should), agent(v36,v1),
a_kind_of(v1,architect-1), quantification(v1,plural),
object(v36,v55), a_kind_of(v55,exhaust-102),
quantification(v55,plural), object(v55,v76),
a_kind_of(v76,bandwidth-1), property(v76,substantial-56),
agent(v55,v60), a_kind_of(v60,graphics-2)]

Designers should recognize that graphics consume
significant bandwidth.

First Sentence of
Policy Statement 5

Table 10. The meaning list for the first sentence of Policy Statement 5: “Designers
should recognize that graphics consume significant bandwidth.”

Meaning List [a_kind_of(v4,render-101), quantification(v4,plural),
tense(v4,imperative), object(v4,v10),
a_kind_of(v10,graphics-2),
a_kind_of(v10,thumbnail-0), object(v10,v25),
a_kind_of(v25,graphics-2),
property(v25,big-51), beside(v10,v48),
a_kind_of(v48,link-0),
quantification(v48,a), range_to(v48,v91),
a_kind_of(v91,version-2),
property(v91,full-57), quantification(v91,the)]

Provide thumbnail graphics of large graphics with a
link to the full version.

Second Sentence of
Policy Statement 5

Table 11. The meaning list for the second sentence of Policy Statement 5: “Provide
thumbnail graphics of large graphics with a link to the full version.”

62

Meaning List [a_kind_of(v24,load-103),quantification(v24,plural),
property(v24,faster-151),property(v24,also-151),
tense(v24,future),agent(v24,v6),
a_kind_of(v6,graphics-2),if(v46,v24),
a_kind_of(v46,give-105),
quantification(v68,plural),tense(v46,past),
inside(v46,v3),a_kind_of(v3,'img src'-0),
quantification(v3,the),object(v46,v54),
object(v46,v63),a_kind_of(v54,height-3),
a_kind_of(v63,width-1),distinct(v54,v63)]

Graphics will also load faster if the height and width
are given in the IMG SRC tag.

Third Sentence of
Policy Statement 5

Table 12. The meaning list for the third sentence of Policy Statement 5: “Graphics will
also load faster if the height and width are given in the IMG SRC tag.”

b) Authors Intention. This policy statement requires that large graphics have

thumbnail graphics that stand in their stead, and that IMG SRC tags be used in the HTML

constructs for graphics. The authors intention here is clear.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 5.
Entities: a_kind_of(v36,recognize-108),

a_kind_of(v1,architect-1),
a_kind_of(v55,exhaust-102),
a_kind_of(v76,bandwidth-1),
a_kind_of(v60,graphics-2)

Relationships: a_kind_of, quantification, tense, agent, object, property
Attributes:

quantification(v36,plural),
tense(v36,should),
quantification(v1,plural),
quantification(v55,plural),
property(v76,substantial-56)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 5.
Entities: a_kind_of(v4,render-101),

a_kind_of(v10,graphics-2),
a_kind_of(v10,thumbnail-0),
a_kind_of(v25,graphics-2),
a_kind_of(v48,link-0),
a_kind_of(v91,version-2)

Relationships: a_kind_of, quantification, tense, object, property, beside, range_to
Attributes:

quantification(v4,plural),
tense(v4,imperative),
property(v25,big-51),
quantification(v48,a),

63

property(v91,full-57),
quantification(v91,the)

Entities, Relationships, and Attributes for Third Sentence of Policy Statement 5.
Entities: a_kind_of(v24,load-103),

a_kind_of(v6,graphics-2),
a_kind_of(v46,give-105),
a_kind_of(v3,'img src'-0),
a_kind_of(v54,height-3),
a_kind_of(v63,width-1)

Relationships: a_kind_of,quantification, property, tense,agent,if, inside, object,
distinct

Attributes:
quantification(v24,plural),
property(v24,faster-151),
property(v24,also-151),
tense(v24,future),
quantification(v68,plural),
tense(v46,past),
quantification(v3,the)

d) Domain of Policy Statement. This statement applies to all pages on a web site.

Information about the domain of this policy statement is not contained explicitly within

the policy statement.

e) Modal Auxiliaries. The modal auxiliary “should” appears in the first sentence

of this policy statement, and the modal auxiliary “will” appears in the second sentence.

f) Fuzzy Descriptors. Fuzzy descriptors are “significant,” “thumbnail,” “large,”

“full,” and “faster.”

g) Anaphoric References. The term “full version” in sentence two is an

anaphoric reference to the term “large graphics.”

h) Speech Act Theory. In the first sentence is not a policy statement, but a polite

statement that web designers have a responsibility to not burden a user with gratuitous

graphics. This sentence establishes that significant bandwidth is bad, and thus that

graphics should be minimized. The word “will” in the third sentence implies that we

should give height and width in the IMG SRC tag, because loading graphics faster is

good.

64

i) Miscellaneous Observations. There is an ellipsis phenomena associated with

the terms “height” and “width;” the full expressions are “height of the graphics” and

“width of the graphics.” Also, the phrase “designers should recognize” should be

eliminated, because it is implied that all of these policy statements consist of things that

designers should recognize. This can be expressed with the following transformation

rule.

designers should recognize Æ ∅

Thumbnail graphics appear within HTML in the following way [Castro, 2003].

The “image.jpg” is the path to the full sized image, and “mini.jpg” is the path to the

thumbnail image. The “alt=...” term is an optional text phrase that will appear if the

thumbnail image for some reason does not.

65

Figure 13. Graphical representation of the meaning list for the first sentence of Policy
Statement 5.1: “Designers should recognize that graphics consume significant
bandwidth.”

66

Figure 14. Graphical representation of meaning list for Policy Statement 5.2: “Provide
thumbnail graphics of large graphics with a link to the full version.” A semantic network
representation for “thumbnail graphics with a link to the full version” is enclosed in the
grey loop.

6. Policy Statement 6

a) The Statement and its Meaning List. Policy Statement 6 is: “Use numbered or

bulleted lists to condense text and to break up the page visually.” This sentence fits into

our taxonomy as a simple statement of policy. The meaning list for this policy statement

is given in text format in Table 13.

pluraL

\
quaitification ^^^^ c^indO^

1 inka]ii^>ei:d'txva J

dRindO:
full 5-

rendei 10J_ , ^
aKxndOf \ Lut if injk t igji—

f\ property
, . * beside ob]e<jt

V"'
rangeT

thumbna iljFinrinf
qua tit i£ icai: ig

th&--^

aKindOf obje

graphicsa—i^Findnf -

vetsiotil

67

[a_kind_of(v44,apply-107),
quantification(v44,plural),tense(v44,imperative),
object(v44,v68),a_kind_of(v68,list-
2),quantification(v68,plural),object(v5435,v68),
conjunction(v5435,[v52,v61],or),
tense(v5435,pastpart),a_kind_of(v52,number-102),
a_kind_of(v61,bullet-100),for(v68,v82),for(v68,v89),
a_kind_of(v82,condense-104),
quantification(v82,plural),
tense(v82,infinitive),object(v82,v85),
a_kind_of(v85,text-2),
a_kind_of(v89,'break up'-114),
quantification(v89,plural),
tense(v89,infinitive),object(v89,v182),
a_kind_of(v182,page-1),quantification(v182,the),
property(v89,visual-51),marker(v89,adverbial),
distinct(v82,v89)]

Use numbered or bulleted lists to condense text and to
break up the page visually.

Meaning List

Policy Statement 6

Table 13. The meaning list for Policy Statement 6: “Use numbered or bulleted lists to
condense text and to break up the page visually.”

b) Authors Intention. Though this statement is an imperative to format text in a

certain way, the circumstances under which this action should be carried out is not clearly

specified in the statement itself. It is clearly not appropriate to use numbered or bulleted

lists to the exclusion of any other type of text format (i.e., plain paragraphs are still

allowed). Does a full page of text without any numbered or bulleted lists violate this

policy? Probably so. But does a page of text that contains no numbered or bulleted lists,

but which does contain several pictures that break up the page visually, violate this

policy? Possibly not, especially if a bulleted or numbered list would clutter a page that is

appealing as it stands.

c) Entities, Relationships, and Attributes for Policy Statement 6:
Entities: a_kind_of(v44,apply-107),

a_kind_of(v68,list-2),
a_kind_of(v52,number-102),
a_kind_of(v61,bullet-100),
a_kind_of(v82,condense-104),
a_kind_of(v85,text-2),
a_kind_of(v89,'break up'-114),
a_kind_of(v182,page-1)

Relationships: a_kind_of, quantification,tense, object, conjunction, for, object,
property, marker, distinct

Attributes:

68

quantification(v44,plural),
tense(v44,imperative),
quantification(v68,plural),
tense(v5435,pastpart),
quantification(v82,plural),
tense(v82,infinitive),
quantification(v89,plural),
tense(v89,infinitive),
quantification(v182,the),
property(v89,visual-51)

d) Domain of Policy Statement. This policy applies to web pages.

e) Modal Auxiliaries. None.

f) Fuzzy Descriptors. The terms “condense” and “break up” are fuzzy

descriptors.

g) Anaphoric References. None.

h) Speech Act Theory. This policy statement implies that condensing text and

breaking up a page visually are good things to do most of the time.

i) Miscellaneous Comments. An ellipsis phenomena is evident in that numbered

bulleted lists are on a web page.

7. Policy Statement 7

a) The Statement and its Meaning List. Policy Statement 7 is: “If you choose to

use a background image or background color, make sure your text is readable. White or

light-colored backgrounds are the most readable.” The first sentence of this policy

statement fits into our taxonomy as a statement of advice that can be converted into

policy. The second sentence is a simple observation of fact. The meaning lists for this

policy statement are given in text format in Tables 14 and 15.

69

[a_kind_of(v3,check-110),
quantification(v3,plural),object(v3,v118),
a_kind_of(v118,be-101),
property(v118,clear-55),
agent(v118,v109),
a_kind_of(v109,text-2),
property(v109,your-50),if(v4,v3),
a_kind_of(v4,prefer-
104),quantification(v4,plural),for(v4,v35),
a_kind_of(v35,apply-107),tense(v35,infinitive),
object(v35,v1381),conjunction(v1381,[v60,v92],or),a_k
ind_of(v60,image-5),
a_kind_of(v60,background-3),
quantification(v60,a),a_kind_of(v92,color-5),
showing(v75,v92),
a_kind_of(v75,background-3),
agent(v4,v9),a_kind_of(v9,people-1),anaphoric(v9)]

If you choose to use a background image or background
color, make sure your text is readable.

Meaning List

First Sentence of Policy
Statement 7

Table 14. The meaning list for the first sentence of Policy Statement 7: “If you choose to
use a background image or background color, make sure your text is readable.”

[a_kind_of(v538,be-101),quantification(v538,plural),
property(v538,clear-55),relationship(clear-55,v2),
property(v2,'the most'-150),agent(v538,v526),
a_kind_of(v526,background-6),
quantification(v526,plural),has_property(v526,v3153),
conjunction(v3153,[v11,v126],or),
property(v11,white-51),
property(v126,coloured-51),property(v126,light-55)]

White or light-colored backgrounds are the most
readable.

Meaning List

Second Sentence of
Policy Statement 7

Table 15. The meaning list for the second sentence of Policy Statement 7: “White or
light-colored backgrounds are the most readable.”

b) Authors Intention. This statement of policy requires that text be readable

against whatever background the designer chooses. The author of this policy statement

comments that light-colored backgrounds are the most readable, though many people

might disagree with this statement, saying that light text on a dark background (i.e., white

text on a black background) is preferable. The only real ambiguity in this statement is

exactly what “light-colored” means.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 7:
Entities: a_kind_of(v3,check-110),

a_kind_of(v118,be-101),
a_kind_of(v109,text-2),

70

a_kind_of(v4,prefer-104),
a_kind_of(v35,apply-107),
a_kind_of(v60,image-5),
a_kind_of(v60,background-3),
a_kind_of(v92,color-5),
a_kind_of(v75,background-3),
a_kind_of(v9,people-1)

Relationships: a_kind_of, quantification, object, property, agent, if, for, tense,
conjunction, showing,

anaphoric
Attributes:

quantification(v3,plural),
property(v118,clear-55),
property(v109,your-50),
quantification(v4,plural),
tense(v35,infinitive),
quantification(v60,a)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 7:
Entities: a_kind_of(v538,be-101),

a_kind_of(v526,background-6)
Relationships: a_kind_of, quantification, property, relationship, agent,

has_property, conjunction
Attributes:

quantification(v538,plural),
property(v538,clear-55),
property(v2,'the most'-150),
quantification(v526,plural),
property(v11,white-51),
property(v126,coloured-51),
property(v126,light-55)

d) Domain of Policy Statement. This statement of policy applies to any regions

of a web page that contain text.

e) Modal Auxiliaries. The phrase “make sure that X is Y” is a polite way of

saying “X must be Y,” and is thus a modal auxiliary.

f) Fuzzy Descriptors. Fuzzy descriptors are “background,” “readable,” “white,”

“light-colored,” and “most.”

g) Anaphoric References. None. The words “you” and “your” refer to the reader

or to a hypothetical web-page designer, and are not anaphoric.

71

h) Speech Act Theory. The phrase “make sure that X is Y” is a polite way of

saying “X must be Y.” The implication is that white or light-colored backgrounds must

be used.

i) Miscellaneous Comments. An ellipsis phenomena is evident in that

background images and colors appear on a web page.

8. Policy Statement 8

a) The Statement and its Meaning List. Policy Statement 8 is: “Limit the number

of different font styles and colors on a page. A good rule of thumb is to use no more than

three different fonts on a page.” The first sentence of this policy statement fits into our

taxonomy as a statement of policy, while we classify the second sentence as a statement

of advice that can be easily converted into policy. The meaning lists for this policy

statement are given in text form in Tables 16 and 17.

[a_kind_of(v5,limit-101),
quantification(v5,plural),tense(v5,imperative),
object(v5,v17),a_kind_of(v17,number-7),
quantification(v17,the),
has_property(v38,v17),a_kind_of(v38,face-1),
property(v38,different-53),
type_of(v38,v42),type_of(v38,v62),
a_kind_of(v42,style-3),quantification(v42,plural),
a_kind_of(v62,color-6),quantification(v62,plural),
on(v38,v89),a_kind_of(v89,page-1),
quantification(v89,a),distinct(v42,v62)]

Limit the number of different font styles and colors on a
page.

Meaning List

First Sentence of
Policy Statement 8

Table 16. The meaning list for the first sentence of Policy Statement 8: “Limit the
number of different font styles and colors on a page.”

72

[a_kind_of(v50,be-102),
object(v50,v90),a_kind_of(v90,apply-107),
quantification(v90,plural),tense(v90,infinitive),
object(v90,v106),a_kind_of(v106,face-1),
quantification(v106,plural),
property(v106,different-51),
quantification(v106,'no more than'),
quantity(v106,3),on(v106,v123),
a_kind_of(v123,page-1),
quantification(v123,a),agent(v50,v1),
a_kind_of(v1,rule-6),
property(v1,good-52),quantification(v1,a)]

A good rule of thumb is to use no more than
three different fonts on a page.

Meaning List

Second Sentence of
Policy Statement 8

Table 17. The meaning list for the second sentence of Policy Statement 8: “A good rule
of thumb is to use no more than three different fonts on a page.”

b) Authors Intention. The authors intention here is clear: use no more than three

different fonts on a given web page.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 8
Entities: a_kind_of(v5,limit-101),

a_kind_of(v17,number-7),
a_kind_of(v38,face-1),
a_kind_of(v42,style-3),
a_kind_of(v62,color-6),
a_kind_of(v89,page-1)

Relationships: a_kind_of, quantification, tense, object, has_property,
property,type_of, on, distinct

Attributes:
quantification(v5,plural),
tense(v5,imperative),
quantification(v17,the),
property(v38,different-53),
quantification(v42,plural),
quantification(v62,plural),
quantification(v89,a)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 8
Entities: a_kind_of(v50,be-102),

a_kind_of(v90,apply-107),
a_kind_of(v106,face-1),
a_kind_of(v123,page-1),
a_kind_of(v1,rule-6)

Relationships: a_kind_of, object, quantification, tense, property, quantity, on,
agent

Attributes:

73

quantification(v90,plural),
tense(v90,infinitive),
quantification(v106,plural),
property(v106,different-51),
quantification(v106,'no more than'),
quantity(v106,3),on(v106,v123),
quantification(v123,a),
property(v1,good-52),
quantification(v1,a)

d) Domain of Policy Statement. This policy statement applies to individual web

pages.

e) Modal Auxiliaries. None.

f) Fuzzy Descriptors. The word “limit” is a fuzzy descriptor. Note that the term

“a good rule of thumb is to use X” should be interpreted as “use X,” and so “a good rule

of thumb” is not fuzzy.

g) Anaphoric References. The word “use” in the second sentence is an anaphoric

reference to the word “limit” in the first sentence.

h) Speech Act Theory. The policy statement can be interpreted as saying “use no

more than three different fonts on a page.”

i) Miscellaneous Comments. An ellipsis phenomena is evident in that “page”

refers to a “web page.”

9. Policy Statement 9

a) The Statement and its Meaning List. Policy Statement 10, “Text and graphics

that move can be particularly annoying. Use blinking text, scrolling marquees, animated

gifs and Java applets very sparingly, if at all.” The first sentence of this policy statement

fits into our taxonomy as a statement of opinion, and the second sentence fits into our

taxonomy as a statement of advice that can be interpreted as policy. The meaning lists

for this policy statement are given in text form in Tables 18 and 19. The meaning list for

the first sentence of this policy statement is given in graphical format in Figure 15.

74

[a_kind_of(v50,be-101), tense(v50,can),
property(v50,annoying-51),
relationship(annoying-51,v92),
property(v92,particularly-151),
agent(v50,v2), agent(v50,v8),
a_kind_of(v2,text-2), a_kind_of(v8,art-1),
agent(v10,v2), agent(v10,v8),
a_kind_of(v10,move-105),
quantification(v10,plural), distinct(v2,v8)]

Text and graphics that move can be particularly
annoying.

Meaning List

First Sentence of
Policy Statement 9

Table 18. The meaning list for the first sentence of Policy Statement 9: “Text and
graphics that move can be particularly annoying.”

[a_kind_of(v15,apply-107),
quantification(v15,plural),object(v15,v31),
object(v15,v40),object(v15,v56),object(v15,v62),
a_kind_of(v31,text-2),agent(v25,v31),
a_kind_of(v25,flash-102),tense(v25,prespart),
a_kind_of(v40,marquee-1),
quantification(v40,plural),agent(v37,v40),
a_kind_of(v37,scroll-100),
tense(v37,prespart),a_kind_of(v56,gif-0),
quantification(v56,plural),object(v44,v56),
a_kind_of(v44,animate-102),
tense(v44,pastpart),a_kind_of(v62,applet-0),
quantification(v62,plural),has_property(v62,v59),
a_kind_of(v59,'Java'-0),property(v15,much-152),
conjunction(v15,[v70,v75],if),property(v70,sparingly-150),
distinct(v31,v40),distinct(v31,v56),
distinct(v31,v62),distinct(v40,v56),
distinct(v40,v62),distinct(v56,v62)]

Use blinking text, scrolling marquees, animated gifs, and Java
applets very sparingly, if at all.

Meaning List

Second Sentence of
Policy Statement 9

Table 19. The meaning list for the second sentence of Policy Statement 9: “Use blinking
text, scrolling marquees, animated gifs, and Java applets very sparingly, if at all.”

b) Authors Intention. This statement can reasonably be interpreted as: “Do not

use text or graphics that move.” The authors intention here is clear.

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement 9.
• Entities:

o a_kind_of(v50,be-101),
o a_kind_of(v2,text-2),
o a_kind_of(v8,art-1),
o a_kind_of(v10,move-105)

• Relationships:
o a_kind_of,

75

o tense,
o property,
o relationship,
o agent,
o quantification,
o distinct

• Attributes:
o tense(v50,can),
o property(v50,annoying-51),
o relationship(annoying-51,v92),
o property(v92,particularly-151),
o quantification(v10,plural)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 9.
• Entities:

o a_kind_of(v15,apply-107),
o a_kind_of(v31,text-2),
o a_kind_of(v25,flash-102),
o a_kind_of(v40,marquee-1),
o a_kind_of(v37,scroll-100),
o a_kind_of(v56,gif-0),
o a_kind_of(v44,animate-102)
o a_kind_of(v62,applet-0)

• Relationships: a_kind_of, quantification, object, agent, tense, has_property,
property, conjunction, distinct

o Attributes:
o quantification(v15,plural),
o tense(v25,prespart),
o quantification(v40,plural),
o tense(v37,prespart),
o quantification(v56,plural),
o tense(v44,pastpart),
o quantification(v62,plural),
o property(v15,much-152),
o property(v70,sparingly-150)

d) Domain of Policy Statement: Any page on a web site where text or graphics

might appear. Information about the domain of this policy statement is not contained

explicitly within this policy statement.

e) Modal Auxiliaries. The word “can” in the first sentence is a modal auxiliary.

f) Fuzzy Descriptors. The terms “particularly,” “annoying,” “very,” “sparingly,”

and “if at all’ are fuzzy descriptors.

76

g) Anaphoric References. “Blinking text, scrolling marquees, animated gifs, and

Java applets” are anaphoric references to “text and graphics that move.”

h) Speech Act Theory. The first sentence is a speech act requiring that text and

graphics that move be avoided or (preferably) not used at all.

i) Miscellaneous Comments. An ellipsis phenomena is evident in that “text and

graphics that move,” and “blinking text, scrolling marquees, animated gifs, and Java

applets” all appear on web pages.

Figure 15. Graphical representation of the meaning list for the first sentence of Policy
Statement 9: “Text and graphics that move can be particularly annoying.” A semantic
network representation for “text and graphics that move” is enclosed in the grey loop.

relatLonsld.

pai-txcnLarIT 15

^naiit±±ica

texts

77

10. Policy Statement 10

a) The Statement and its Meaning List. Policy Statement 10 is “Any web site

collecting personal information must comply with the provisions of reference (d).

Network Identification and Internet Protocol addresses are not considered personal data.”

fits into our taxonomy as an unambiguous statement of policy. The meaning lists for this

policy statement are given in text format in Tables 20 and 21. The meaning lists for this

policy statement are given in graphical format in Figures 16 and 17.

[a_kind_of(v42,see-108), property(v42,not-151),
tense(v42,past), object(v42,v79),
a_kind_of(v79,data-1), property(v79,personal-55),
object(v42,v24), object(v42,v9),
a_kind_of(v9,identification-3), agent(v9,v1),
a_kind_of(v1,network-2), a_kind_of(v24,address-1),
quantification(v24,plural), object(v22,v24),
a_kind_of(v22,protocol-1), object(v22,v20),
a_kind_of(v20,'Internet'-0), distinct(v9,v24)]

Meaning List

Network identification and Internet protocol addresses
are not considered personal data.

First Sentence of
Policy Statement 10

Table 20. Meaning list for the first sentence of Policy Statement 10: “Network
identification and Internet protocol addresses are not considered personal data.”

[a_kind_of(v68, conform102), quantification(v68, plural),
tense(v68, must), instrument_of(v68, v92),
a_kind_of(v92, provision1), quantification(v92, plural),
quantification(v92, the), part_of(v92, v101),
a_kind_of(v101, reference3), identification(v101, v116),
a_kind_of(v116, d0), agent(v68, v20),
a_kind_of(v20, location2)
located_at(v10, v20), a_kind_of(v10, web0),
quantification(v20, any), agent(v30, v20),
a_kind_of(v30, compile101),
tense(v30, prespart), object(v30, v58),
a_kind_of(v58, information2), property(v58, personal51)]

Meaning List

Any web site collecting personal information must comply
with the provisions of reference (d).

Second Sentence of
Policy Statement 10

Table 21. Meaning list for the second sentence of Policy Statement 10: “Any web site
collecting personal information must comply with the provisions of reference (d).”

b) Authors Intention. The intention of the author is clear: the cited items are not

personal data. The implication is that other statements of policy may put constraints on

how personal data should be handled, but Network ID and IP addresses are not subject to

these constraints.

78

c) Entities, Relationships, and Attributes for First Sentence of Policy Statement

10.

• Entities:
o a_kind_of(v42,see-108),
o a_kind_of(v79,data-1),
o a_kind_of(v9,identification-3),
o a_kind_of(v1,network-2),
o a_kind_of(v24,address-1),
o a_kind_of(v22,protocol-1),
o a_kind_of(v20,'Internet'-0)

• Relationships:
o a_kind_of,
o tense,
o object,
o property,
o agent,
o quantification,
o distinct

• Attributes:
o property(v42,not-151),
o tense(v42,past),
o property(v79,personal-55),
o quantification(v24,plural)

Entities, Relationships, and Attributes for Second Sentence of Policy Statement 10.
• Entities:

o a_kind_of(v68, conform102),
o a_kind_of(v92, provision1),
o a_kind_of(v101, reference3),
o a_kind_of(v116, d0),
o a_kind_of(v20, location2)
o a_kind_of(v10, web0),
o a_kind_of(v30, compile101),
o a_kind_of(v58, information2)

• Relationships:
o a_kind_of
o quantification
o tense
o instrument_of
o part_of, identification
o agent, located_at
o object
o property

• Attributes:
o quantification(v68, plural),

79

o tense(v68, must),
o quantification(v92, plural),
o quantification(v92, the),
o tense(v30, prespart),
o property(v58, personal51)

d) Domain of the Policy Statement. The domain of this policy statement consists

of any place on a web site where Network Identification or IP addresses might appear–

specifically, individual web pages.

e) Modal Auxiliaries. The word “must” in the second sentence is a modal

auxiliary.

f) Fuzzy Descriptors. The word “personal” is a fuzzy descriptor.

g) Anaphoric References. The term “personal information” appearing in the

second sentence is an anaphoric reference to the term “personal data” of the first

sentence.

h) Speech Act Theory. No significant speech acts are apparent here. It’s worth

noting however that the term “considered” contributes no meaning; the first sentence of

this policy statement carries the exact same meaning without this word. Similarly, the

phrase “the provisions of” in the second sentence can be eliminated without changing its

meaning. In both cases these terms do not contribute any meaning, but may add a small

amount of redundancy to aid the reader.

i) Miscellaneous Observations. One way to simplify this statement is to

recognize that it consists essentially of two independent statements of policy: first, that

network identification is not considered to be personal data, and second, that IP addresses

are not to be considered personal data. This is obvious from the natural-language

statement itself, and also from the triangular feature in the center of the meaning lists

graphical representation. A transformation into two separate meaning lists can be made

by (1) eliminating the term distinct(v9,v24) from the meaning list, then (2) grouping

together v9, v42, and everything connected to them except for v24, into a single meaning

list, and then finally (3) grouping together v24, v42, and everything connected to them

80

except for v9. As a rule expressed symbolically in terms of natural-language text, we can

say

a and b are c Æ a is c, b is c

Figure 16. Graphical representation of meaning list for Policy Statement 10.1: “Any web
site collecting personal information must comply with the provisions of reference (d).” A
semantic network representation for “personal information” is enclosed in the grey loop.

prov UUAL

plurt^

t^EdOJ

^UtbtLfLCttU

^UtMlflOft

ptrtO£-

L4*btLJLcttUh

/

1 ■ Kind.

t*bC*

pr+sptrT CttPipLULOL

81

A

B

Figure 17. Graphical representation of the meaning list for “Network Identification and
Internet Protocol addresses are not considered personal data.” A semantic network
representation for a “Network Identification” object is enclosed in the grey loop labeller
“A,” and a semantic network representation for an “Internet Protocol address” object is
enclosed in the grey loop labeller “B.”

p»«

not 151. Ptr.ornlSi

...10^ proptrt

tELndOJ

plurt

protoool

gutntl^lottl

tKlndCrf

Idtntl^lottlorilL

THIS PAGE IS INTENTIONALLY LEFT BLANK

82

83

V. DISCUSSION OF RESULTS

Our case study was carried out to characterize the ambiguities that appear in

natural-language policy statements, and the feasibility of resolving these ambiguities

automatically in a fielded system. Our case study focused on ambiguities of the

following types.

ß Anaphoric References. It was observed that anaphoric references were relatively

simple, in part because it was unusual for policy statements to extend over more

than two sentences. It should be straightforward to resolve anaphoric references

in natural-language policy statements using standard algorithms such as those

discussed in [Jurafsky and Martin, 2000], [Lappin and Leass, 1994], and [Hobbs,

1978].

ß Speech Acts. For the most part, speech acts within our case study consisted of

suggestions or statements of advice which were intended to be interpreted as

imperative commands. It is not expected that speech acts will present significant

difficulties for a natural language input system for a policy workbench.

ß Fuzzy Expressions. We identified over two dozen fuzzy expressions in the ten

natural-language statements of policy that we studied. As shown in Table 3, these

fuzzy expressions covered a variety of grammatical categories, and fell along a

number of different dimensions. Despite the variety of fuzzy expressions found

in our case study, the discussion following Table 3 demonstrates that each can be

quantified in some reasonable way.

Our case study also identified modal auxiliaries contained within policy

statements. Modal auxiliairies are significant because they provide important clues for

the semantic interpretation of policy statements.

Determining the domain to which a policy statement applies is important for

analysis of policy statements, but reliably identifying domain objects through automatic

means appears to be a non-trivial problem. Some statements of policy do not even

mention the domain explicitly, so that the reader is required to infer the object (or

objects) to which it applies. For example, Policy Statement 6 (“Use numbered or bulleted

84

lists to condense text and to break up the page visually”) applies to web pages, though

“web pages” are not mentioned in the statement. Interestingly, however, there were only

a small number of domain objects for the statements from our case study: web pages, and

web sites. We expect that this will be the case in general, so that the relevant domain

only needs to be chosen from a limited number of possibilities.

85

VI. CONCLUSIONS

In this paper we introduced and discussed a novel architecture for the analysis of

natural language policy statements. The architecture employs semantic networks to

represent natural language policy statements, and uses a "graph-matching" technique to

determine whether a particular domain object conforms to or violates a given statement

of policy. The benefits associated with our architecture include representations that lend

themselves well to visualization in a graphical form, and a proof technique that promises

low computational complexity in practical applications.

After discussing our architecture, we carried out a case study which focused on

identifying and categorizing the various ambiguities appearing in natural-language policy

statements. The case study analyzed ten natural-language policy statements culled from a

policy document for web sites hosted by a university. Our findings suggest that

algorithms will be able to resolve ambiguities due to anaphora, speech acts, and fuzzy

expressions in most natural language policy statements.

There are several important directions in which our work can be extended. The

work contained in this paper has shown the feasibility of a novel architecture for analysis

of natural-language policy statements, but among the work that needs to be done before

construction can be considered is a rigorous comparison between our logic based on

semantic networks and the first-order predicate calculus. It should be possible to

compare the representations and proof techniques of these two formalisms through a

careful reading of the relevant literature; that is, it is not expected that any original

research would need to be done. However, it is important that this literature be reviewed

and the findings documented to establish a strong theoretical foundation for continued

work.

Another area where work remains to be done is with our use of Mathematica for

generating graphical representations of meaning lists. We had hoped that the code which

embeds graphs in the 2-dimensional plane would be able to generate clear graphical

representations of meaning lists in a fully automated manner. Unfortunately, the

graphical representations that are generated automatically usually have minor but

annoying imperfections: labels that obscure each other, edges that needlessly cross, or

86

other problems that require editing by a human. Though the editing process is relatively

quick and painless, and an argument could be made that working with a graph in the

editor is an effective way of gaining important information about it, it would still be

better if this work were done automatically.

Also, our graphical representations were generated by writing the outputs of the

MARIE parser to a file, performing some simple edits on the file using a search-and-

replace utility, and then reading the file into Mathematica. A version of our software that

ran without the Mathematica interpreter and that could be integrated directly into the

MARIE parser would be very helpful for further work in this area.

87

APPENDIX A: CONVERSION OF MEANING LISTS INTO GRAPHICAL
FORM

This appendix documents a Mathematica package that converts meaning lists

from the MARIE parser into a graphical form. The package, called nlpPlotting, is

shown in Figure 18 below.

To use the package, it is read into Mathematica, and the command Get[name],

often seen in the short form <<name, is used to read in the text of the file containing the

meaning list information. To generate this file, the output from the MARIE parser has to

be edited slightly: the expression result() wrapped around meaning lists must be

eliminated; square brackets [] enclosing meaning list components must be replaced by

curly brackets {} to create Mathematica lists; parentheses () in meaning-list attributes,

entities, and relationships must be replaced by square brackets [] to create Mathematica

expressions; and all dashes and underscores in meaning lists must be dropped to prevent

conflict with the special meanings that Mathematica has for these symbols.

Once the meaning lists are read in, they are converted into graph data-structures

by the function generateMLGraph[]. They can subsequently be plotted using the

S h o w G r a p h [] , the SpringEmbedding[], RadialEmbedding[],

RankedEmbedding[], RootedEmbedding[], and ShakeGraph[] commands,

as explained in [Skiena, 1990]. A simple Java-based editor which allows the nodes of a

graph to be moved without “breaking” edges can be obtained from

http://www.cs.sunysb.edu/~lloyd/grapheditor/index.html

Our package consists essentially of one function, generateMLGraph[], and

two helper functions, binaryRelationQ[], and meaningListQ[]. The function

generateGraph[] converts a meaning list into a graph data structure that can be

manipulated by commands in the Combinatorica package. The helper functions ensure

that the code given below for generateGraph[] is called only when its input has the

correct form for a meaning list.

88

Before defining any functions, however, we set up the "framework" required for

proper use of a package. This framework, consisting of lines 1, 5, 23, and 24, set up both

a public and a private context that our functions will use. A context is essentially a

directory structure for variable names, which helps to prevent collisions of variable

names [Wolfram, 1996]. The usage messages in lines 2, 3, and 4 appear in the public

context, and provide a user with a short summary of a function.

(*
The function generateGraph converts a meaning list in text format into
a graph that can be plotted with the Combinatorica graph-plotting
commands. The meaning list is assumed to come from the MARIE parser
after all underscore characters "_" have been removed from variable
names.

The function meaningListQ determines whether an input argument has the
form of a meaning list.

The function binaryRelationQ determines whether an input argument has
the form of a binary relation. *)

(*1*) BeginPackage["mlPlotting`"]

(*2*) generateMLGraph::usage="generateMLGraph[s_List] converts \
a meaning list into a graph that can be plotted using Combinatorica's \
ShowGraph command."

(*3*) binaryRelationQ::usage="binaryRelationQ[e_] returns true if the\
expression e is a binary relation; that is, if it is not unary, \
tertiary, etc. It returns false otherwise."

(*4*) meaningListQ::usage="meaningListQ[e_] returns true if the \
expression e has the form of a meaning list; that is, if e is a \
list of binary relations. It returns false otherwise."

(*5*) Begin["`Private`"]

(*6*) Needs["DiscreteMath`Combinatorica`"];

(*7*) binaryRelationQ[e_]:= Length[e]==2;

(*8*) meaningListQ[e_]:= And@@(binaryRelationQ/@e)&&(Head[e]===List);

(*9*) generateMLGraph[s_/;meaningListQ[s]]:=
(*10*) Module[
(*11*) {meaningList,relationships,entities,edgeDataStructPrelim,
(*12*) edgeDataStruct,edgeIndexRules,g},
(*13*) meaningList=s;
(*14*) relationships=Union[Head/@meaningList];
(*15*) entities=Union[Flatten[{#[[1]],#[[2]]}&/@meaningList]];
(*16*) g=EmptyGraph[Length[entities]];

89

(*17*) AppendTo[g[[2,#]],VertexLabel->
 entities[[#]]]&/@Range[Length[entities]];
(*18*) edgeDataStructPrelim=meaningList/.
 a_[b_,c_]->{{b,c},EdgeLabel->a};
(*19*) edgeIndexRules=Transpose[
 {entities,Range[Length[entities]]}]/.{a_,b_}->(a->b);
(*20*) edgeDataStruct=edgeDataStructPrelim/.edgeIndexRules;
(*21*) Return[AddEdges[g,edgeDataStruct]];
(*22*)];

(*23*) End[] (*end private context*)

(*24*) EndPackage[]

Figure 18. The mlPlotting package. This package is contained in a plain text file called
mlPlotting.m, which is meant to suggest the phrase "Meaning List Plotting."

Within the private context (line 5), we read in the Combinatorica package so that

we have available functions like EmptyGraph[] and AddEdges[]. The function

generateMLGraph[] converts a meaning list into a Graph data structure that can be

manipulated by Combinatorica. We want this function to accept as an argument only

expressions that have the form of a meaning list, and we want arguments of any other

form to leave the function unevaluated. We specify that a "meaning list" has the form of

a list of binary expressions of arbitrary length (there may possibly be exceptions to this,

but they are rare and we leave this topic for future research). The function

meaningListQ[] in line 8 returns True or False, according to whether or not its

argument is a "meaning list quantity." It uses the function binaryRelationQ[] to

determine whether an expression is a "binary relation quantity."

The function generateMLGraph[] is defined in lines 9-22. It accepts as an

argument any expression (which we call s), subject to the condition (indicated by /;)

that meaningListQ[s] returns True. The function code is enclosed within a

Module[], which treats the variables in the initial list (lines 11 and 12) as local. A local

copy of the input meaning list is made in line 13, and all the relationships in the meaning

list are extracted in line 14. To clarify the terminology being used here, we consider a

meaning list to be a collection of entities, with relationships specified between them. The

variable names in the package were chosen to reflect their association with the entities

90

and relationships within a meaning list, where the entities and relationships within a

meaning list are as shown in the following expression.

{relationship1[entity1a,entity1b],relationship2[entity2a,en
tity2b],…,relationshipN[entityNa,entityNb]}

Thus, getting a list of all the relationships is a simple matter of getting the "heads"

of all the binary relationships. This is done in line 14 by mapping the function Head[]

onto all the expressions in the meaning list; this is accomplished with the Map operator

(which has /@ as a short form). Similarly, getting a list of all the entities in line 15

involves mapping an appropriate function over the meaningList variable; in this case,

we use an anonymous function, expressed by {#[[1]],#[[2]]}&, that simply returns

a list containing the two arguments of the expression it is applied to. The functions

Union[], and Flatten[] are used to remove redundant terms and unwanted levels of

nesting.

In line 16 we generate an empty graph g with the same number of vertices as the

number of unrepeated entities we have, and in line 17 we assign the appropriate label to

each vertex in the graph g. Lines 18, 19 and 20 work together to generate a data structure

for the edges of the graph. We begin in line 18 by generating a modified form of the

meaning list: each binary relation is converted into a list that defines two vertices

connected by an edge, and the label that goes on that edge. Line 19 is the definition of a

set of rules that transform entity names into a sequence of numbers; this is necessary

because each vertex is fundamentally represented by a number, with the entity name

being nothing more than a label. Line 20 applies these rules to generate the final data

structure representation for edges. Line 21 adds these edges to the graph g, resulting in

the finished graph data structure.

91

LIST OF REFERENCES

Allen, James, Natural Language Understanding, The Benjamin/Cummings Publishing
Company, 1995.

Brennan, S. E., M. W. Friedman, and C. Pollard, “A centering approach to pronouns,”
ACL-87, Stanford, California, 1987, pp. 155-162.

Berzins, Valdis, and Luqi, Software Engineering with Abstractions, Addison Wesley
Publishing Company, 1990.

Bloomfield, Leonard, Language, The University of Chicago Press, Chicago, 1984.

Brooks, Frederick P. Jr., The Mythical Man-Month, Addison Wesley Longman, Inc.,
1995.

Covington, Michael A., Natural Language Processing for Prolog Programmers, Prentice
Hall, Englewood Cliffs, New Jersey, 1994.

Damianou, Nicodemos C., A Policy Framework for Management of Distributed Systems,
Dissertation, University of London, Imperial College of Science, Technology and
Medicine, 2002.

Damianou, Nicodemos, Naranker Dulay, Emil Lupu, and Morris Sloman, The Ponder
Policy Specification Language, In Sloman, M., Lobo, J. and Lupu, E. C., eds.,
Lecture Notes in Computer Science, No. 1995: Proceedings of the International
Workshop on Policies for Distributed Systems and Networks, Springer-Verlag,
January 2001, pp. 18-38.

Guglielmo, E. J., and N. C. Rowe, “Natural language retrieval of images based on
descriptive captions.” ACM Transactions on Information Systems, 14, 3 (May
1996), pp. 237-267.

Hobbs, J. R., “Resolving Pronoun References.” Lingua, 44, 1978, pp. 311-338.

Hodges, John C. and Mary E. Whitten, Hodges’ Harbrace College Handbook, Harcourt
Brace Jovanovich, Inc., New York, 1982.

Jurafsky, Daniel, and James H. Martin, Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, Prentice Hall, Upper Saddle River, New Jersey, 2000.

Johnsonbaugh, Richard, Discrete Mathematics, Macmillan Publishing Company, New
York, 1984.

Joyce, Steven T., and John Q. Walker, “Policy-Based Network-Management: Getting
Started.” White paper, NetIQ Corporation, July 1999. A version of this paper
appeared in Cisco World, October 1999, pp. 18-20.

Lappin, S. and H. Leass, “An algorithm for pronominal anaphora resolution.”
Computational Linguistics, 20(4), 1994, pp. 535-561.

McCawley, James D., The Syntactic Phenomena of English, Second Edition, The
University of Chicago Press, Chicago, 1998.

92

McCawley, James D., Everything That Linguists Have Always Wanted to Know About
Logic But Were Ashamed to Ask, Second Edition, The University of Chicago Press,
Chicago, 1993.

Meyer, J. J. Ch., R. J. Wieringa, and F. P. M. Dignum, “The Role of Deontic Logic in the
Specification of Information Systems.” Utrecht University, Department of Computer
Science Document Number UU-CS-1996-55, ISSN: 0924-3275, December 1996.

Michael, James B., Edgar H. Sibley, Richard F. Baum, Richard L. Wexelblat, and Fu Li,
"Experiments in Support of Policy Representation." Proceedings of the International
Conference on Economics/Management and Information Technology. Japan Society
for Management Information, Tokyo, 1992, pp. 323-326.

Michael, James Bret, Vanessa L. Ong, and Neil C. Rowe, "Natural Language Processing
Support for Developing Policy-Governed Software Systems." 39th International
Conference on Object-Oriented Languages and Systems, Santa Barbara, California,
July-August 2001.

Miller, George A., “Nouns in WordNet: A Lexical Inheritance System.” Five Papers on
WordNet, pp. 10-25, 1993. Available at
http://www.cogsci.princeton.edu/~wn/5papers.pdf.

New York Times, Confusion Over Policy is Major Issue in Train Death, August 1, 2002.

Ong, Vanessa L. "An Architecture and Prototype System for Automatically Processing
Natural-Language Statements of Policy." Thesis, Naval Postgraduate School,
Monterey, California, March 2001.

Pinker, Steven, The Language Instinct: How the Mind Creates Language,
HarperPerennial, New York, 1995.

Rowe, N. C., “Precise and efficient retrieval of captioned images: The MARIE project.”
Library Trends, 48, 2 (Fall, 1999), pp. 475-495.

Russell, Stuart, and Peter Norvig, Artificial Intelligence: A Modern Approach, Prentice
Hall, Upper Saddle River, New Jersey, 1995.

Sibley, Edgar H., James Bret Michael, and Richard L. Wexelblat, "Use of an
Experimental Policy Workbench: Description and Preliminary Results." Database
Security, V: Status and Prospects, C. E. Landwehr and S. Jajodia (Eds.), Elsevier
Science Publishers, Amsterdam, The Netherlands, 1992, pp. 47-76.

Skiena, Steven, Implementing Discrete Mathematics: Combinatorics and Graph Theory
with Mathematica, Addison-Wesley Publishing Company, Redwood City,
California, 1990.

Sloman, M., J. Lobo, and E. C. Lupu, eds., Lecture Notes in Computer Science, No.
1995: Proceedings of the International Workshop on Policies for Distributed Systems
and Networks, Springer-Verlag, January 2001.

Wolfram, Stephen, The Mathematica Book, 3rd ed., Wolfram Media/Cambridge
University Press, 1996.

93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Bret Michael
Naval Postgraduate School
Monterey, California

4. Professor Neil C. Rowe
Naval Postgraduate School
Monterey, California

